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Exploiting self-organization for the autonomi management ofdistributed systemsAbstrat: This thesis fouses on algorithms to support di�erent aspets of distributedsystems management and their implementation using self-organized, adaptive, and bio-inspired tehniques. Three main topis are overed in the thesis: peer-to-peer overlaymanagement, e�ient resoure disovery, and deentralized task alloation. Conerningpeer-to-peer overlay management, a bio-inspired algorithm alled BlåtAnt was devel-oped. BlåtAnt is used to build and maintain an optimized peer-to-peer overlay throughthe ollaborative behavior of di�erent speies of mobile ant agents. Connetions betweenpeers are modi�ed to bound the diameter of the overlay and to remove redundant linksthat may result in exessive ommuniation tra�. The initial idea has evolved into twofully distributed and fault resilient solutions: BlåtAnt-R and BlåtAnt-S. In order tosupport e�ient resoure disovery, a deentralized searh protool that improves proba-bilisti �ooding by means of a proative ahing mehanism was introdued. The proposedsolution is based on epidemi information sharing, and provides important improvementsin the reall rate with minimal network overhead. Finally, to support deentralized taskalloation, and provide intelligent sheduling deisions aross multiple grid nodes, a ol-laborative ommunity sheduling algorithm named aria, whih aims at serving the gridas a whole has been implemented and evaluated. Based on the researh performed in thisthesis, it is our opinion that self-organization an bring a deisive improvement in theperformane, reliability, and robustness of distributed systems.Keywords: Distributed Systems, Peer-to-Peer Systems, Self-Organization, Overlay Man-agement, Resoure Disovery, Bio-inspired Computing, Grid Sheduling





Utilizzo di metodologie auto-organizzate per la gestione autonoma disistemi distribuitiSommario: Questa tesi vuole assumere ome oggetto d'analisi degli algoritmi per lagestione di diversi aspetti dei sistemi distribuiti, nonhè la loro implementazione tramitel'impiego di meanismi auto-organizzati, adattivi e bio-ispirati. Tre sono i temi trat-tati nella tesi: la gestione di una rete overlay basata sulla tenologia peer-to-peer (P2P ),la riera d'informazione attraverso metodi ompletamente distribuiti, e l'alloazione de-entralizzata di ompiti su un insieme di sistemi distribuiti. Per quello he riguarda ilprimo tema, ovvero la gestione di un overlay P2P, viene desritto un algoritmo he miraall'ottimizzazione delle onnessioni tra sistemi ispirato al omportamento delle olonie diformihe. Le onnessioni vengono modi�ate dall'algoritmo riduendo sia il diametro dellarete sia il numero di ollegamenti ridondanti, al �ne di limitare il tra�o generato dallaomuniazione tra sistemi. L'idea iniziale si evolve in due implementazioni ompleta-mente distribuite, hiamate BlåtAnt-R e BlåtAnt-S. Suessivamente, per permetterela riera d'informazione sulla rete, presentiamo un protoollo deentralizzato he miglioral'e�ienza dei metodi di riera esistenti. La soluzione proposta è basata sullo sambiodi informazioni tra i nodi della rete attraverso un protoollo epidemio. In�ne, per o�rireun'ottimale alloazione di ompiti sulle risorse disponibili (per esempio in una griglia om-putazionale, o grid), disutiamo un algoritmo di shedulazione ompletamente distribuitohiamato aria. Le soluzioni proposte nella tesi sono valutate dettagliatamente, disuten-done i pregi e i difetti. Sulla base della riera presentata in questa tesi, è nostra opinionehe i metodi auto-organizzati possano apportare importanti bene�i per iò he onernel'e�ienza, la robustezza e l'a�dabilità dei sistemi distribuiti.Parole hiave: Sistemi distribuiti, P2P, Auto-Organizzazione, Riera d'informazione,Sistemi Bio-ispirati, Alloazione sul grid
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Chapter 1Introdution
Contents1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Evaluation Senario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Researh Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . 51.5 Struture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Distributed systems desribe a olletion of independent omputers that appear to theuser as a single entity [276℄. Distributed systems an be lassi�ed in di�erent ategoriesaording to their struture and purpose: peer-to-peer systems [58℄, ad-ho networks [222℄,mesh networks [18℄, grid systems [119℄, et. Despite some di�erenes, the ommon goaldriving the development and deployment of distributed systems is the ability and will-ingness of the partiipating entities to share loal resoures with the ommunity, suh as�les in peer-to-peer systems or omputing resoures in grids. The bene�ts of distributedsolutions are funtional separation, improved reliability, higher salability, and reduedosts [276℄. On the downside, distributed systems are inherently more omplex to manage,di�ult to seure and to fully exploit than their entralized ounterparts. A number oftehniques for managing the issues raised by distributed appliations (suh as oordinationand synhronization) have already been proposed in the past; unfortunately, the sale,dynamism, volatility, and seurity onerns of urrent senarios often require rethinking ofnew solutions [245℄. Moreover, the endowments of distributed solutions are often hinderedby the omplexity required for the management of the underlying infrastruture. Conse-quently, solutions that simplify administration and lessen the burden of on�guring andoptimizing distributed systems are required.Self-organization and adaptiveness an be onsidered as desirable features for improvingin this area and establish reliable, e�ient, and salable distributed solutions. In parti-ular, self-organizing systems have been put forward as a way to overome the omplexitybottlenek [107℄, by replaing omplex entralized ontrol with fully distributed operationemerging from the interation and oordination between a multitude of simple omponents.In aordane with the de�nitions proposed in [107, 126℄, we understand the term organiza-tion as struture with funtion. Whereas struture onerns the arrangement (or order) ofomponents in the system (for example, the topology of a network), funtion is related toits purpose. Under this de�nition, a self-organizing system is able to spontaneously reateand maintain a funtional struture without entral ontrol, and self-organization refersto the spontanous emergene of a global order [171℄ (as opposed to haos and entropy)resulting from distributed ontrol and loal interations [145℄. The distributed nature of



2 Chapter 1. Introdutionself-organizing systems provides a number of advantages over their entralized analogues,suh as resiliene, robustness, graeful degradation and reovery from errors [145℄. Rely-ing on the interrelationships among a large number of di�erent elements omposing thesystem as well as positive or negative feedbak mehanisms, self-organized solutions areintrinsially dynami; nonetheless, suh dynamiity is not arbitrary, but rather onvergenttoward preferable on�gurations that optimally ful�ll the purpose of the system. In thisregard, the adaptiveness of a system refers to its ability to modify its organization in orderto optimally �t its purpose to the onditions of the environment [145℄.Our researh spans over di�erent onerns, suh as ommuniation, information re-trieval, and resoure alloation. Aordingly, this thesis addresses major ritial aspets ofthe design, implementation and deployment of distributed systems, and o�ers autonomisolutions for building an optimized peer-to-peer overlay, supporting e�ient resoure dis-overy, and promoting fully distributed task alloation. Following the separation of on-erns proposed in [151℄, we divide our system into di�erent funtional omponents, namelyoverlay management, resoure disovery, and task alloation. The peer-to-peer overlayrepresents the foundation of our work, as it provides an adaptive ommuniation infras-truture on top of whih high-level appliations have been implemented. More spei�ally,a resoure disovery mehanism that exploits the harateristis of the overlay and lo-al shortut ahes to e�iently forward queries has been implemented. Additionally, atask alloation protool has been designed to enable dynami and optimal distribution ofomputing tasks aross all available resoures. In the rest of this hapter, we explore themotivation behind our researh, disuss the onsidered evaluation senario, and highlightthe bene�ts introdued by our solution.1.1 MotivationIn reent years, the availability of a large number of networked omputers, high-bandwidthonnetions, as well as the general adoption of broadband aess to the Internet, enabledthe deployment of distributed systems ahieving unpreedented sale and popularity. Inthis ontext, grids have emerged as infrastrutures for high performane omputing, thatserve a number of sienti� ommunities [72℄ and leverage a large pool of geographiallydispersed resoures to solve large and omplex tasks. Conversely, peer-to-peer �le-sharingnetworks [3, 8℄ have beome an aessible mass-phenomenon used by millions of users world-wide. Despite the progress made in simplifying end-user interation with suh distributedsystems, managing large sale deployments, enabling e�ient aess to their resoures, anddealing with seurity aspets remain ative domains of researh [289, 221℄.Based on the review of the most ommon unjusti�ed assumptions of distributed om-puting presented in [245℄ we an identify several harateristis that should be aountedfor in order to reate robust and reliable systems: fault tolerane, asynhronous operation,e�ient network usage, seurity management, and support for dynami and heterogeneousnetworks. More spei�ally, distributed systems must be able to ope with failures of bothhosts and the underlying network infrastruture: failures should be deteted and an appro-priate response should be triggered to ensure proper operation of the system. Distributedappliations must also not depend on synhronous operations, as ommuniation latenybetween di�erent hosts may signi�antly di�er [307℄, and avoid assuming that the system



1.1. Motivation 3is omposed of homogeneous resoures.From a strutural perspetive, di�erent arhitetures have been proposed. Dependingon the sale, onstraints, and goals, entralized, hierarhial or fully distributed man-agement is employed. On one end, entralized approahes represent simple solutions toserve a large number of geographially sparse lients with minimal bandwidth onsump-tion. Central systems are easier to seure, and data onsisteny an be easily ensured.Meanwhile, fully distributed designs redue maintenane osts and inrease robustness byavoiding dependeny on entral systems that represent potential single point of failures.Unfortunately, suh a design introdues oordination hallenges and inreases tra�.Peer-to-peer appliations represent a widely known example of fully distributed sys-tems, while grids traditionally rely on entralized ontrol and servie provisioning. Theseopposite approahes mainly re�et the di�erenes between peer-to-peer systems and grids.Peer-to-peer systems are highly dynami systems, with less engagement from eah parti-ipant, while grids are relatively stable, persistent and reliable [275℄.At the funtional level, to solve the aforementioned management problems, researhhas turned to autonomi omputing [172℄ as potential solution for automated and adaptivesystems [211℄. Autonomi systems promote self-on�guration, self-repair, and autonomousoptimization of the quality of servie. In this regard, information about the environmentan be oupled with spei� management poliies to enable autonomi operation of thesystem in a fully deentralized way [95, 177℄. Moreover, bio-inspired solutions [48℄ representa suitable approah to the problem, beause they inherently support all the important self-⋆features of autonomi omputing.Bio-inspired omputing repliates natural phenomenons, suh as genetis [176℄ or emer-gent behaviors [98℄, to solve omplex omputational problems. In ontrast to traditionalapproahes, bio-inspired solutions are generally geared toward deentralized problem solv-ing, with tehniques resulting from the ollaboration of several entities governed by simplerules. In the ontext of network management, a number of bio-inspired methods have beenproposed to takle problems suh as routing in omplex topologies [63℄ and load balaning[210℄. Emergene is of partiular interest for distributed systems; in systems with emergentproperties the behavior is not a property of an individual entity, but rather the result ofollaborative interations between all omponents. This advantage of emergent approahesalso a�ets the robustness of the system: whereas entralized approahes might su�er aomplete breakdown in ase of failure, emergent solutions do not depend on single enti-ties and thus represent reliable solutions apable of surviving unexpeted situations andproblems.Aordingly, the aim of this thesis is to investigate the implementation of novel self-organized solutions to ease the deployment of distributed systems. In partiular, we aimat employing bio-inspired tehniques to provide unsupervised adaptation to hanges inthe environment. Furthermore, in order to address all issues related to entralization,we propose to base our system on fully distributed mehanisms, and employ peer-to-peerommuniation between the omponents of our solution. Seurity aspets are out of thesope of this thesis; a review and analysis of seurity in peer-to-peer system is available in[289, 30℄.



4 Chapter 1. Introdution1.2 Evaluation SenarioThe work presented in this thesis has evolved in the ontext of a novel middleware for gridsnamed SmartGRID [150℄ 1, the goal of whih is to provide an abstration layer for thedeployment of robust and reliable grid servies on top of a multitude of loosely onneted,heterogeneous and volatile resoures. The proposed solution thus aims at �lling the gapbetween grid appliations and the omputing resoures.Whereas urrently deployed grid systems are relatively stable and omprised of a limitednumber of nodes, the vision for next-generation grids foresees large-sale networks with ahighly dynami and evolving behavior, with nodes joining and leaving the system in realtime and with the number of nodes inreasing over time. SmartGRID envisions a gridomputing environment that is open to a larger group of ontributors than traditional grids,and that requires less management e�ort. To inrease robustness and avoid single pointsof failure, SmartGRID promotes loosely oupled peer-to-peer interation between theengaged entities. Eah ontributing site is independently managed aording to loal usagepoliies; moreover, SmartGRID is designed to integrate with, and make use of, existingplatforms and infrastrutures, thus reating a omplementary, instead of an alternative,tehnology to inrease e�ieny. In this ontext, interoperativity with traditional resouremanagement systems is an essential feature of the platform.The proposed arhiteture is omposed of two independent layers that ommuniatethrough an intermediate datawarehouse, as depited in Figure 1.1.

Figure 1.1: SmartGRID arhitetureSmart Signaling Layer The Smart Signaling Layer (SSL) enables low-level ommuni-ation between resoures, and provides resoure disovery servies. The primary goal of theSSL is to abstrat from the heterogeneous and volatile nature of the underlying resouresand network infrastruture to provide a robust ommuniation and servie provisioning1SmartGRID is supported by the Swiss Hasler Foundation, in the framework of the ManCom Initiative(ManCom for Managing Complexity of Information and Communiation Systems), projet Nr. 2122



1.3. Researh Problem 5framework. Operation and servies o�ered by the SSL degrade graefully in the event ofnetwork or site failure; for this, the system is based on a fully deentralized and distributeddesign that avoids bottleneks and single points of failure. Furthermore, researh on theSSL foused on the implementation of a self-organized and adaptive peer-to-peer solutionby employing bio-inspired methods. In this ontext, of partiular interest are ant-inspiredapproahes, as they have already proven to provide robust means for network-related prob-lems suh as routing [63℄ or load-balaning [210℄.Smart Resoure Management Layer The Smart Resoure Management Layer (SRML)is in harge of supervisioning the usage of resoures and mediating interation between theuser and the system by providing an interfae for task submission and traking. The SRMLexploits information from the SSL to e�iently shedule tasks either on loal resoures oron remote nodes. Aordingly, the SRML interoperates with the existing sheduling in-frastruture, and obeys to loal and remote resoure usage poliies.Datawarehouse The SSL and SRML ommuniate through a datawarehouse, whihprovides both an asynhronous ommuniation hannel and a temporary storage. In theontext of the SmartGRID middleware, the datawarehouse also helps maintaining learseparation of onerns between the two funtional layers.Although the main ontribution of this thesis falls within the Smart Signaling Layer,researh has spanned over all layers. In partiular, the overlay management algorithmintrodued in Chapter 3 and the resoure disovery protool in Chapter 4 onern theSSL, while the meta-sheduling framework presented in Chapter 5 onerns the SRML.1.3 Researh ProblemDi�erent questions arise from the previously desribed senario.
• �Can we exploit self-organization and bio-inspired solutions to provide an optimizedpeer-to-peer ommuniation and servie provisioning framework?�
• �Can we improve existing resoure disovery mehanisms using fully distributed bio-inspired solutions?�
• �Can we provide e�ient task alloation to optimally exploit a large number of re-soures by means of a fully distributed sheduling mehanism?�These questions summarize the researh problem addressed by this thesis.1.4 Contributions of this thesisAording to the requirements that arise from the researh problem and the onsideredevaluation senario, the ontributions of this thesis are threefold. First, it proposes analgorithm for managing a self-strutured adaptive peer-to-peer overlay, that is optimized



6 Chapter 1. Introdutionto support e�ient ommuniation between nodes while avoiding single points of failuresand bottleneks. Next, it introdues a generi method for improving resoure disoverye�etiveness by exploiting loal ahes. Finally, it addresses the problem of e�ientlyalloating tasks aross heterogeneous resoures by means of a lightweight meta-shedulingprotool to fully exploit the bene�ts of distributed omputing without imposing limitationson loal resoure management. To ahieve our goals, we introdue novel tehniques andmake use of self-organized and bio-inspired methods in order to ensure robust and adaptivebehaviors.In the ontext of the SmartGRID projet, this thesis also introdues a software plat-form for the deployment of fully distributed bio-inspired solutions, in partiular thoseinvolving ant-like mobile agents. The generi nature of the latter enables its integrationinto di�erent projets that aim at implementing and exploiting distributed swarm intel-ligene solutions. Furthermore, along with the aforementioned algorithms and protools,this platform represents a fully funtional framework for supporting robust and adaptivegrid servies in a heterogeneous environment, as envisaged by the SmartGRID projet.1.5 StrutureThis thesis overs the aforementioned topis as follows.Chapter 1 provides an overview of the thesis, and disusses the motivations behind theresearh topi as well as the open issues and hallenges to be addressed. Furthermore itde�nes the researh problem and highlights the ontributions of the thesis.Chapter 2 studies the related work in the �eld of peer-to-peer systems. Our disus-sion overs the two main lasses of existing peer-to-peer solutions, namely strutured andunstrutured ones, and draws some omparisons of the orresponding drawbaks and ad-vantages with help from a detailed analysis of noteworthy projets. Some theoretialfoundations about graph theory are also presented.Chapter 3 onsolidates the knowledge gained through this literature review in a list ofrequirements that onstitute the guidelines for validating our solution for the managementof a peer-to-peer overlay. Consequently, the fundamental blok of our researh, namelythat of a self-organized optimized peer-to-peer overlay is presented. Our novel overlaymanagement algorithm, alled BlåtAnt, represents a fully distributed solution basedon bio-inspired tehniques. The logial foundations of our approah are �rstly validatedby an analytial onstrution and subsequently by empirial experiments based on twoimplementations that attest the qualities of the solution.In Chapter 4 we deal with the problem of providing an e�ient resoure disoverymehanism by means of a fully deentralized proative ahing system. The proposedsolution improves existing �ooding protools by exploiting loal ahes on eah node, thatare updated using an epidemi protool, to diret queries toward nodes that are morelikely to provide the required servie. Extensive evaluation assesses the improvements inthe reall rate and the inreased e�ieny provided by the proposed searh sheme.Chapter 5 onerns distributed task alloation, thus putting more fous on the on-sidered grid omputing senario. In this view, a review of existing sheduling solutions ispresented. Subsequently our fully distributed meta-sheduling protool is introdued andevaluated.



1.5. Struture 7Chapter 6 reviews the proposed solutions in the ontext of the SmartGRID projet.In partiular, a prototype platform for the development and deployment of some of theaforementioned bio-inspired algorithms is presented and relevant details are demonstrated.Chapter 7 draws the onlusions of this thesis, and summarizes the results and ahieve-ments of the work presented in the preeding hapters. Moreover, food for thought andpointers for future researh based on the urrent work are provided.
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10 Chapter 2. Peer-to-Peer Systems
Peer-to-Peer systems refer to a distributed omputing paradigm that is built upon net-work arhitetures where nodes at as both servers and onsumers. In ontrast, traditionallient-server models exhibit a lear separation between nodes providing servies and thosemaking use of it.A network overlay is a logial topology maintained on top of another network, eithera physial one (built of wired or wireless ommuniation links) or a virtual one (anotheroverlay). Peer-to-Peer systems are typially managed by appliation-level protools thatdepend on the underlying network failities (suh as TCP or UDP ommuniation): eahnode of the overlay needs to be able to ommuniate with possibly all other nodes, providedthat the end address is known.Peer-to-peer overlays are haraterized by diret ommuniation between the partii-pating members, aimed at improving salability, fault-tolerane and robustness omparedto entralized approahes. In ontrast to physial networks, onnetions in an overlay arelogial, and depend on the ability of eah node to address ommuniation towards ar-bitrarily any other node by exploiting the routing apabilities of the underlying network.Physial and overlay networks an be abstrated to graphs, the topology of whih is de�nedby the (logial) onnetions between the nodes. In this respet, an advantage of overlaynetworks over physial ones is the ability to easily modify or adapt the topology to meetuser-de�ned requirements.Nodes onneted to a partiular overlay may be referred to as a ommunity : nodeswithin the same ommunity typially share some resoures amongst eah other, suh asservies or data. Building and maintaining suh ommunities, namely providing meha-nisms to allow nodes to join the overlay and to ontat other nodes, is ahieved by meansof membership management protools [285, 123℄. These protools also aim at providingan e�ient ommuniation hannel to spread information, to implement anonymous andseure ommuniation, or to overome ensorship barriers.The fous of peer-to-peer ommunities is to enable ollaboration amongst a large num-ber of systems and ease the sharing of information between them. Aordingly, researh inthis �eld is onerned with both the problem of maintaining an overlay as well as that of re-trieving information. This hapter fouses on both issues, as a review of existing solutionsannot neglet the existene of a lose relation between overlay management and resouredisovery. More spei�ally, while all peer-to-peer systems are haraterized by their lakof entral authority, di�erent peer-to-peer arhitetures follow diverse design priniplesdepending on the strategies developed to retrieve information. An important step in theunderstanding of these systems is identifying the major di�erenes between approahes,and highlighting their bene�ts and drawbaks. We survey existing researh work aiming attraing the priniples of peer-to-peer systems and presenting some noteworthy solutions,restriting our disussion to information storage and retrieval peer-to-peer system on a�xed network infrastruture. We thus omit topis suh as overlays for streaming (P2PTV)[143, 190℄, voie ommuniation (VOIP) [11, 264℄, or mobile and ad-ho ommuniation[228, 89℄. The purpose of this review is to brie�y highlight key design onepts of existingsystems. A thorough analysis and taxonomy of the extensive literature available on thistopi is outside the sope of this thesis. Nonetheless, an in-depth analysis of the urrent



2.1. Graph theory fundamentals 11state-of-the art of peer-to-peer approahes is available in [58℄.The foundations for understanding the harateristis of an overlay network lie in theirmathematial properties. In this regard, an introdution to graph theory onepts thatwill be used throughout the rest of this thesis are presented in Setion 2.1. Our disussionwill then fous on the strutural di�erenes between existing solutions, with Setion 2.2 in-troduing peer-to-peer information systems and highlighting the main di�erenes betweenurrent approahes, namely strutured and unstrutured designs. An in-depth look ofstrutured systems is provided in Setion 2.3, with a disussion of noteworthy implementa-tions and a detailed review of the mehanisms for storing and retrieving information in theoverlay. Conversely, Setion 2.4 presents unstrutured solutions, while Setion 2.5 analyzesthe problem of hurn in peer-to-peer overlays. Setion 2.6 elaborates on the appliationof peer-to-peer tehnologies in the �eld of grid resoure disovery. Finally, this hapteronludes in Setion 2.7, with a disussion on �ndings that enables a better understandingof the goals and issues that are addressed by our solution.2.1 Graph theory fundamentalsThe harateristis of a omputer network an be analyzed by onsidering it as a diretedgraph. In this respet, to better understand the terms used throughout the rest of thisthesis, a brief but preise de�nition is required. Further analysis on the topi an be foundin [294℄.A graph is de�ned by a triple 〈V,E,→〉, where V is a set of verties, E a set of edges,and → a relation assoiating two verties (alled endpoints) and an edge. A graph an beused to represent omputer networks onsisting of nodes and un-direted links: aordinglynodes are the verties, and links are the edges of the graph. Similarly, network overlaysan be mapped to graphs where edges are de�ned by logial onnetions between nodes.For simpliity, in the rest we overlook the di�erenes between the terms graph, network,topology, and overlay, and use either one of them interhangeably. In the same spirit, theterms node and vertex, as well as edge and link will also be used interhangeably.For a graph G = 〈V,E〉, we de�ne n ∈ G ⇔ n ∈ V . A node ni in a graph G = 〈V,E〉is adjaent to another node nj if there exist an edge (ni, nj) ∈ E. The neighborhoodset Ni of node ni is the set of nodes adjaent to ni, the size of of whih determines thedegree of a node. A graph is said to be undireted i� : ∀ni ∈ V : ∀nj ∈ Ni → ni ∈ Nj ,making the adjaeny property ommutative; otherwise the graph is said to be direted.In a omputer network we onsider a node ni as onneted to another node nj i� ni isadjaent to nj , i.e. ni ∈ Nj ∧ nj ∈ Ni. Figure 2.1 illustrates an example graph where
V = {a, b, c, x, y}, E = {(b, a), (c, b), (b, x), (x, b), (c, y), (y, c)}. Arrow lines depit edgesonneting two endpoint verties, whereas double arrow lines indiate undireted links. Apath in G is a suession of nodes nk ∈ G, suh that there exists a link between every nodein this suession.In a physial network, eah link is a physial onnetion (either wired or wireless)between two nodes. In an overlay network, a (logial) link between two nodes exists ifboth have knowledge of eah other and an ative ommuniation takes plae. A graph
G is onneted if for eah pair of nodes ni, nj ∈ G, there exists at least a path between



12 Chapter 2. Peer-to-Peer Systems
Figure 2.1: Example graphthem. Furthermore, a graph is said fully onneted if there exists a link between eah pairof nodes. Conversely, if a graph is not onneted, it is said to be partitioned.Several measurements are useful to desribe high-level properties of a graph. In thisregard the degree of a node is its number of neighbors; if the graph is direted it is possible todistinguish between in-degree and out-degree, for links originating from a node, respetivelyending on a node. Related to the degree, important measures that help de�ning theomplexity of a graph are the average degree, whih represents the mean degree aross allnodes, and the degree distribution, whih expresses the probability that a node has exatlya given number of neighbors.The eentriity of a node n in a onneted graph G is the the greatest distane between

ni and any other node nj ∈ G. Aordingly, the diameter of a graph G is the maximumeentriity of any node ni ∈ G, the radius is minimum eentriity of all nodes ni ∈ G,while the average path length represents the average eentriity.The lustering oe�ient of a graph measures the degree to whih nodes share ommonneighbors. For a node ni with neighbors degree k, the loal lustering oe�ient Ci isomputed as the quotient of the number n of existing links between ni's neighbors and thenumber of all possible links between them (k(k−1)
2 ):

Ci =
2n

k(k − 1)The lustering oe�ient C of a graph G is the average of the loal lustering oe�ientsof all verties:
C =

1

|G|

∑

ni∈G

Cni
.In a soial network, the lustering oe�ient is the probability that two friends of aperson are also mutual friends. Finally, the girth of a graph is the length of the shortestyle. If the graph does not ontain any yles (for example, a tree graph), its girth isin�nite.2.2 Peer-to-peer information systemsThe main hallenge of peer-to-peer system is e�ient information retrieval mehanismsthat provide satisfatory results while being salable and onsuming a reasonable amountof bandwidth. We measure this level of satisfation by omputing the hit rate (also known



2.2. Peer-to-peer information systems 13as reall rate), namely the ratio between retrieved results out of all possible ones. Beauseretrieval queries typially generate less tra� than atual ontent transfer, some peer-to-peer systems, suh as Napster [9℄ and BitTorrent [1℄, implement dediated entralizedindies and rely on peer-to-peer interation only for data exhange. Centralized indexingshemes are simpler to design and provide e�ient (network tra�-wise) searh, but reatesingle points of failure, as well as robustness and salability issues. On the other hand,pure peer-to-peer solutions remove the bottlenek of entral servers, and make use of fullydistributed searh mehanisms aross equipotent nodes at the expense of longer responsetimes. Moreover, fully deentralized searh in pure peer-to-peer overlays involves an addi-tional trade-o� between the quality of results and the generated tra�. As a onsequene,hybrid [300℄ (hierarhial) solutions have been developed: some of the peers, typially theones with greater omputing apabilities or better onnetivity, are used to mediate re-quests of other peers and ahe information for later usage. Hybrid solutions reognizeand exploit the heterogeneity of many peer-to-peer networks, with great variations in theapaity of eah peer (both in terms of omputational resoures and onnetivity).2.2.1 Classes of Peer-to-Peer SystemsBeause of the drawbaks of entralized indexing arhitetures, researh on peer-to-peersystems mainly fouses on pure and hybrid solutions. In this ontext, the hallenges raisedby the dynami and distributed nature of peer-to-peer systems has led to the developmentof di�erent solutions for both the membership management problem, and the data manage-ment one. Two main lasses are generally reognized [193, 58℄: strutured and unstruturedoverlay networks. In the former there exists a tight relation between the information sharedon the overlay and the topology (struture) of the overlay itself, while in the latter freedomis given in both the onstrution of the overlay as well as in the storage of the data.Strutured solutions an be ompared to a well maintained library, where books arelassi�ed by topi and alphabetially sorted. The loation of a book an thus be preiselydetermined given that its title is known. While suh preise organization enables verye�ient searh by title, it still fails to support more omplex queries, suh as �All bookswith a butter�y on the over�. Moreover, an e�ort is required to keep order within thelibrary: when a new topi is added or a shelf is full, books may be moved from one shelfto another. Conversely, unstrutured solutions an be ompared to a room with a lot ofbooks laid on the �oor: while searhing for a book by title beomes more hallenging, nopartiular are is required when adding or removing a book.Both approahes inherit the bene�ts of distributed systems suh as fault resilieneand a lak of entralized ontrol, however they bear important di�erenes that need to beonsidered and disussed. Aordingly, the remainder of this hapter aims at reviewing themain harateristis of a number of strutured and unstrutured systems, highlighting theiradvantages and weaknesses. Our goal is to identify the requirements, the open hallenges,as well as possible solutions that will drive the implementation of a novel peer-to-peeroverlay to support resoure disovery in our grid validation senario.



14 Chapter 2. Peer-to-Peer Systems2.3 Strutured SolutionsStrutured solutions, also known as Distributed Hash Tables (DHT), maintain topologiesusing deterministi algorithms in order to enable network e�ient resoure disovery andbounded delay performane. Contents shared by nodes are assoiated with an identi�er,and all identi�ers are then assoiated to nodes aording to spei� hash funtions. Thereis thus a strong orrelation between the ontent and the node that will store it. In orderto loate ontent on the overlay, a lookup funtion is used to resolve the routing pathto the node assoiated to the ontent's hash. Aordingly, the query an be suessfullyrouted through one or multiple steps to the node storing the ontent. In this setion severalexamples of DHT systems are presented and disussed.2.3.1 ChordChord [269℄ assigns to eah node an identi�er of m bits within a irular spae of size 2m,so that the network is organized as a logial ring. Nodes know their suessor in the ring,i.e. the node whose identi�er follows in the identi�ers' spae. Content shared by nodes isalso assigned an identi�er (or key), whih is typially a hash of the ontent's data, modulo
m bits, generated using a onsistent hashing funtion [169℄. Consistent hashing funtionsensure that adding or removing bukets in the table does not signi�antly onern theremaining ones; in this ontext, their use minimizes the number of nodes and keys a�etedby the addition or removal of a node (i.e. a buket in the DHT), and helps spreading keysevenly aross available nodes. A keyK is published on the node referred to as successor(K)whose identi�er mathes K or follows it. K suessor(K)0 (000) N1 (001)1 (001) N1 (001)2 (010) N2 (010)3 (011) N3 (011)4 (100) N4 (100)5 (101) N6 (110)6 (110) N6 (110)7 (111) N7 (111)Figure 2.2: Example Chord ring (m=3)Figure 2.2 illustrates an example of a ring topology with m = 3: not all of the 23 = 8available identi�ers are alloated to nodes. For all possible keys that an be mapped onthe ring, the values for successor(K) (i.e. the node to whih a key K is assigned) areindiated. Keys 0 (000) and 5 (101) are assigned to nodes N1 (001), respetively N6 (110)beause a node, the key of whih exatly mathes them, does not exist in the overlay.To speed up the lookup operation, eah node n maintains a routing table (alled �ngertable) of size m that ontains the identi�ers of other peers in the ring: the entry at the
ith position (1 ≤ i ≤ m) in the �nger table orresponds to the �rst node that sueeds n



2.3. Strutured Solutions 15by at least 2i−1 hops in the ring, i.e. successor(s) with s = n + 2i−1. Table 2.1 lists theontents of the �nger table orresponding to node N3.
i s successor(s)1 3 + 20 = 4 N42 3 + 21 = 5 N63 3 + 22 = 7 N7Table 2.1: Example Chord �nger table for N3Lookup proedure In order to �nd successor(K) in the overlay, either to build up the�nger table or to lookup for a key, a node starts by querying known nodes starting fromthe one that appears loser to K, and repeats the proess until the target peer has beenfound. The routing ost in a Chord overlay of N peers is of O(logN) hops.Joining and leaving A node joins the overlay by ontating one of the existing peersand �nding its position in the ring by querying for the key assoiated with its identi�er.When a node joins the overlay or leaves the system, the suessors pointer and �ngertables of nearby nodes in the ring need to be updated. Chord solves this by periodiallyexeuting a stabilization proedure on eah node to rearrange keys and update the �ngertable. To provide resiliene in the event of suessor's rash, eah node maintains a list ofnodes that sueed it in the ring: if a suessor fails to respond to a query, one of the knownbakup suessors is ontated. The ost of node join or leave is O(log2N) messages.Further researh A number of appliations use Chord as the underlying peer-to-peeroverlay. Notable examples are the Cooperative File System (CFS) [88℄ whih employsa Chord overlay to loate data bloks on servers, projet SpoVNet [43℄ whih aims atreating a ommuniation infrastruture over heterogeneous tehnologies and uses Chordto implement its routing sheme, and a Chord based DNS servie [82℄. Additionally,a self organized approah, named Self-Chord [113℄, proposes the use of bio-inspiredmobile agents on a Chord overlay to self-organize keys by lustering them on nodes. Theoverlay is onstruted and maintained as in Chord, but ontent's keys and node's keys areindependent, as there is no need to assign a key to a preisely spei�ed peer. Data is insteadgrouped into di�erent lasses, with eah element in the same lass sharing the same keyvalue. Mobile agents reorganize the keys in the overlay using a lustering approah similarto [114℄. Eah node omputes an average value alled entroid based on the numerial valueof the stored keys: agents move keys on the overlay in order to minimize the distane ofeah key to the entroid of the urrent node. Routing of queries is based on an estimationof the key distribution over the overlay that allows for jumping to nodes that are lose tothe target.2.3.2 KoordeKoorde [166℄ builds on the priniples of Chord by using a ring topology augmentedwith de Bruijn graphs [57℄ links instead of a �nger table. De Bruijn graphs are omposed



16 Chapter 2. Peer-to-Peer Systemsof 2b nodes, for a given number of bits b, where eah node is assigned one of the avail-able numerial values in [0, 2b[. Eah node m is onneted with nodes 2m mod 2b and
(2m + 1) mod 2b.Lookup proedure To route a message from x to y in a de Brujin graph eah hopis resolved by progressively replaing x's low-order bits with y's high-order ones, i.e. byshifting x to the left and introduing y's high-order bits on the right. For example, inthe de Bruijn graph shown in Figure 2.3, to route a message from node 110 to 001, thesequene of traversed nodes is 110→ 100→ 000→ 001.

Figure 2.3: Example de Bruijn graph for b = 3. The highlighted links illustrate the routingpath from node 110 to 001.Beause in a real network not all available identi�ers 2b are used (typially b = 160),Koorde uses an adaptation of a de Bruijn graph to overome the problem of missing(imaginary) nodes: eah node m is onneted with both the �rst node sueeding it on thering, and the �rst existing predeessor of 2m mod 2b. Figure 2.4 shows a simple Koordetopology with b = 3, detailing the shortuts employed by eah node. To provide faulttolerane in the event of a node failure, not only the �rst predeessor of 2m mod 2b isknown, but also the O(logN) predeessors of it.To route a message in the overlay, the previously desribed routing algorithm is adaptedto support imaginary nodes by omputing hops through them. Aordingly, in a Ko-orde network with N nodes with a node degree of O(log(N)), it is possible to ahieve
O(log(N)/loglog(N)) hops routing.Joining and leaving Beause of the similarity between Koorde and Chord, the for-mer uses the same proedures for joining the overlay, maintaining proper onnetivity andreovering after abrupt disonnetions by means of a stabilization proess.2.3.3 PastryPastry [246℄ is a distributed peer-to-peer overlay infrastruture that bears similaritiesto Plaxton meshes [223℄ and makes use of pre�x routing [28℄. Nodes are assigned random



2.3. Strutured Solutions 17node s = 2m mod 2b predecessor(s)000 000 111001 010 001010 100 011011 110 100100 000 111101 010 010110 100 011111 110 100Figure 2.4: Example Koorde overlay for b = 3. Values in itali in the table representimaginary de Bruijn neighbors that do not exist in the overlay.unique identi�ers of length k bits (k = 128) that map uniformly into a irular spae of size
2k; nodes an simultaneously at as servers (storing objets), routers (addressing inomingmessages to the next hop in the overlay), or lients (initiating lookups). Content sharedin the network is assigned a key in the same namespae as node identi�ers, meaning thata lookup operation is equivalent to routing a message towards a node.Lookup proedure For the routing proess, node and ontent identi�ers are interpretedas digits with base 2b, where b is a user-de�ned parameter typially set to 4. This valuedetermines both the amount of information stored by eah node, as well as the performaneof the routing proess: for an overlay of N peers, the routing algorithm is typially ableto deliver a message to a destination in less than O(log2bN) steps. The routing proessitself makes use of the node's identi�er or the ontent's key to forward inoming messagesto the node the identi�er of whih is numerially loser to the target. More spei�ally, ateah routing step, the message is forwarded to a known node whose identi�er shares withthe target a pre�x that is at least one digit longer than the pre�x that the target shareswith the urrent node's identi�er. If no suh node is known, the message is forwarded toa node whose identi�er shares a pre�x with the key as long as the urrent node, but isnumerially loser to the key than the urrent node's identi�er.To support routing, nodes have to maintain several data strutures that atively om-pose their node state: a routing table, a neighborhood set, and a leaf set. The routing tableontains log2bN rows, with 2b−1 entries eah; for every node X, eah entry in row n of theloal routing table is a pointer (i.e. IP address) to a node whose identi�er shares the �rst
n digits (pre�x of length n) with the identi�er of X, but di�ers at least in the (n + 1)thdigit. The neighborhood set ontains the addresses and identi�ers of nodes that are in theproximity of X, and it is used to ensure that a message is forwarded to nodes with minimaldistanes. The leaf set is divided into two subsets, in order to store referenes to nodes theidenti�ers of whih are either numerially larger, or smaller than that of the urrent node.An example of the state of a node is illustrated in Figure 2.5.When a message is reeived, a node heks whether the identi�er is within the boundsof the leaf set. If this is the ase, the message is forwarded to the node in the leaf set theidenti�er of whih has the minimal distane to the key in the message. Otherwise, the



18 Chapter 2. Peer-to-Peer SystemsRouting tablerow entries0 0212 ⋆ 2233 33221 1012 1131 ⋆ 13332 1203 1211 1223 ⋆3 1230 1231 ⋆ 1233
Leaf setsmaller larger1211 13211132 13121111 13331200 1321

NeighborhoodSet1231112213221002Figure 2.5: Example Pastry node state for node 1232 (b = 2, and key size redued to 8bits for simpliity). Underlined text in the routing table highlights the pre�x shared withthe 1232 identi�er, respetively bold the non-mathing digits.routing table is onsulted and the message is forwarded to a node that shares a ommonpre�x with the message's key by at least one more digit.Joining and leaving A node Y an join the overlay by sending a speial join messageto a node within the overlay; the key of this message is the randomly generated identi�erof Y . The join request is routed as a lookup request, and eah traversed node sends itsstate to Y so that the latter an �ll up its own data strutures. More spei�ally, to �ll therouting table, node Y will opy row n with the entries at row n from the node traversedat step n.Pastry nodes keep trak of failed peers by means of heartbeat monitors and by de-teting failures when forwarding messages. When a failed node is disovered, a reoveryproedure is initiated by its neighbors in order to restore their state.Further researh Pastry is used to manage the overlay in Sribe [64℄, a deentralizedmultiast infrastruture: links between nodes are used to reate multiast trees that enablee�ient dissemination of messages. Furthermore, SplitStream [67℄ builds on Sribe toprovide e�ient high-bandwidth ontent distribution. Another projet, PAST [100℄, im-plements a distributed storage solution with support for repliation and load-balaning.Finally, Squirrel [155℄ implements a distributed web ahe shared amongst a large num-ber of mahines.2.3.4 TapestryTapestry [309℄ (now alled Chimera) uses a similar approah to Pastry, but also dealswith repliation by means of multiple roots for eah objet. Tapestry uses a variation ofPlaxton meshes where eah peer is assigned a 160 bit identi�er represented by a k digit keywith base b. Nodes maintain a routing table that is used to forward messages by means ofa pre�x routing algorithm. The routing table is organized into rows with multiple levels:entries at the ith row, jth level, point to the losest nodes that share with X a ommonpre�x of exatly j − 1 digits, and whose jth digit is equal to X's jth digit plus 1. Figure2.6 illustrates the routing table of an example Tapestry node with a digit identi�er equalto 1232 (b = 2). To inrease the resiliene of the network, multiple referenes are kept forthe same entry in the table. Nodes an publish new data in the DHT by determining thenode that the ontent should be assigned to, and whih will be referred to as the root of



2.3. Strutured Solutions 19the objet. To ahieve this, a lookup query with the identi�er of the ontent is started.To improve both resiliene and the lookup performane, eah node along the routing pathalso stores a referene to the node where the request originated. Nodes that have sharedontents in the overlay periodially renew their submissions by repeating the publiationproess. Routing tablerow ↓ / level → 1 2 3 41 2⋆ ⋆ ⋆ 13⋆⋆ 120⋆ 12332 3⋆ ⋆ ⋆ 10⋆⋆ 121⋆ 12303 0⋆ ⋆ ⋆ 11⋆⋆ 122⋆ 1231Figure 2.6: Example Tapestry routing table for node 1232 (b = 2, and key size redued to
8 bits for simpliity). Underlined text in the routing table highlights the pre�x shared withthe 1232 identi�er, respetively bold numbers the non-mathing digits. Entries ontainaddresses of multiple nodes mathing the given pattern: for example, entry 11⋆⋆ mayontain the pointers to 1123, 1102, et.Lookup proedure Tapestry lookup proedure uses a longest pre�x mathing routingalgorithm. At eah step nodes look in the table for the losest known node for the requestedidenti�er: the message is progressively forwarded toward the node that is responsible forthe ontent's key. Thanks to repliation along the routing path, requests are most likelyful�lled before reahing the objet's root, with the upper bound for number of hops beingequal to O(log(N)).Joining and leaving Nodes join at a position determined by a lookup of their ownidenti�er in the network. The inoming node interats with nodes on the routing path toretrieve information used to �ll up the neighbors map. To �nish the join proess, nodesupdate their shared keys with adjaent peers. Finally, heartbeat messages are used todetet abrupt disonnetions and ensure reliable operation of the overlay.Further researh Oeanstore [180℄ is a storage solution originally built on Tapestry(now based on Bamboo [237℄) that provides seure arhiving on an overlay of untrustedservers. Another notable projet that exploits a Tapestry overlay is Bayeux [312℄, whihimplements a multiast infrastruture.2.3.5 VieroyVieroy [197℄ uses onneted rings and an approximation of a butter�y network, whilethe mapping between ontent's keys and nodes resembles the priniples of Chord. Anoverlay of N peers is divided into log(N) levels, with eah level organized as a ring; allnodes are also onneted in a global ring. Eah node is assigned an identity that maps itsdisrete identi�er to a real identi�er in the [0, 1] interval, and is randomly assigned to alevel l. Beside from onnetions with its predeessor and suessor in the orrespondingring, eah peer is provided with additional onnetions to other nodes. In partiular, �ve



20 Chapter 2. Peer-to-Peer Systemslong range ontats are reated with peers loated in di�erent levels. A node with identity
n in level l has onnetions with two peers at level l+1 (down links to a node in level l+1at a distane of 1/2l, i.e. a node at level l+1 with identity at least n+1/2l), one at shortdistane, one at long distane, and one onnetion with a peer at level l − 1 (up link to alose-by node).Lookup proedure To loate an item in the overlay, nodes forward the request followingtheir up link until the identi�er of the ontated node is lower than the item's key. Then,either ring or down links are used to ontinue routing up until the item has been found.As an example, onsider the simple Vieroy overlay depited in Figure 2.7. To route amessage from node 7 to node 10, the forwarding path is: 7→ 6 (up link)→ 5 (up link)→
10 (down right link). The routing proess in an overlay of N nodes requires O(log(N))hops.Joining and leaving Nodes have to selet a level to onnet to, and thus need anestimate of the size of the overlay. Instead of implementing a ostly network size estimationalgorithm, a node s estimates the size of the network as N ′ = 1/distance(s, successor(s))(where successor(s) is the suessor in global ring). Node s selets its level uniformlyat random in the interval [1, N ′], and then ontats its suessor in the ring of that levelto omplete the join proess. When a node leaves, the remaining nodes reorganize theironnetions aordingly.

Figure 2.7: Example Vieroy network with 16 nodes. Dotted lines indiate the mappingbetween disrete identi�ers and the real ones (identity) in the interval [0, 1]. Up links areomitted for simpliity.



2.3. Strutured Solutions 212.3.6 CANThe Content Addressable Network (CAN) [234℄ assigns to eah node (and ontent'skey) a portion of a d-dimensional toroidal key spae (Figure 2.8). Keys for both nodes andontents are generated by means of a uniform hash funtions that maps to a point in thespae. Eah peer stores the keys lying within its region; moreover, for every dimension,nodes are aware of lose-by peers managing neighbor regions.

Figure 2.8: Example CAN 2-dimensional spae with 12 nodesLookup proedure To lookup for a key, the hash funtion is applied to determine theassoiated point in the key spae. Lookup messages are progressively forwarded, using agreedy routing algorithm, to nodes that are loser to the zone ontaining the point. Theaverage path length in an overlay of size N with a uniform distribution of the keys in ddimensions is O((d/4)/(N
1

d )).Joining and leaving To join the overlay, a node selets one of the existing peers andsends its request. The zone managed by the latter is split between the peers, and key-valuepairs lying in the joining node's zone are transferred. Information about neighbor peersis fethed by the inoming node and all involved nodes in adjaent zones are ontatedto update their neighbors' sets. A node that leaves the overlay will hand over the keysto a neighbor. To detet abrupt disonnetions, nodes periodially exhange heartbeatswith their neighborhood: if a failure is deteted, lose-by peers oordinate to assign theidenti�ers left over by the leaving node to the remaining peer that is urrently responsiblefor the adjaent zone of smallest size.Further researh The work presented in [299℄, extends CAN overlays with additionalshortut paths, or expressways, that enable logarithmi routing and redue lateny. In asimilar way, [274℄ augments a CAN overlay with long links to reate a small-world network.



22 Chapter 2. Peer-to-Peer Systems2.3.7 KademliaKademlia [203℄ assigns to eah peer and to eah resoure 160 bits key identi�ers. Contentkeys are stored on nodes the identi�er of whih is lose to the key by using a bitwise XORmetri. Eah node maintains a list of log(N) bukets, eah of whih ontains k entries thatrefer to other nodes in the overlay. Entries in the ith buket refer to peers at a distanebetween [2i, 2i+1[. When for some key-value pair a node that is loser is deteted, thepair is repliated instead of moved to improve fault tolerane; for the same reason, nodesperiodially re-insert referenes to shared objets in the overlay.Lookup proedure To route a message, peers ompute the XOR distane ⊕ betweentheir identi�er and the destination, and use it to retrieve information from the buketstable: entries in the orresponding buket are used to forward the request. In ontrast toother DHT approahes, during a lookup Kademlia peers start parallel requests to otherpeers; moreover, peers exhange routing information during eah lookup. This behaviorminimizes the need for a separate exhange of information between peers.Buket table for 011 (N3)row range entries0 [20 . . . 21[ 010 (N2)1 [21 . . . 22[ 001 (N1)2 [22 . . . 23[ 100 (N4), 101 (N5)Buket table for 101 (N5)row range entries0 [20 . . . 21[ 001 (N4)1 [21 . . . 22[ 110 (N6), 111 (N7)2 [22 . . . 23[ 010 (N2), 011 (N3)Figure 2.9: Example Kademlia overlay with 8 nodes and sample buket tables for nodes
011 (N3) and 101 (N5).Figure 2.9 illustrates a simple Kademlia overlay with 8 nodes (N0. . .N7), and theontents of the buket table of nodes 011 and 101. To route a message from 011 (N3) to
111 (N7), N3 omputes the XOR distane 011 ⊕ 111 = 100, and looks for entries in itstable in the range distane of 4. Beause 111 is not found, nodes 100 (N4) and 101 (N5)will be queried in parallel. Hopefully, N5 an return the address of 111, N7, so that N3an suessfully send its message as well as update its buket table.Joining and leaving To join the overlay, a node x ontats one of the existing nodes
y and inserts it into the appropriate buket. Suessively, a node lookup is started on xto searh for the key x: beause y is the only available neighbor, x will start exhangingneighbors with it and thus gain knowledge of additional peers in the overlay. Liveness ofnodes is monitored by heking the inoming messages and the suessfulness of outgoingrequests: referenes to nodes that stop ommuniating in the buket table are removedfollowing a least reently seen evition algorithm.



2.3. Strutured Solutions 23Further researh Kademlia is urrently employed by several P2P �le sharing [13℄ andontent distribution [122, 12℄ arhitetures to support e�ient keyword searh.2.3.8 SkipNetSkipNet [140℄ uses a distributed approximation of skip lists [226℄ to implement a DHTwith loality properties (a feature typially negleted in other systems). A skip list isa data struture omposed of multiple levels of linked lists: at the base level all nodesof the list are present, at higher levels pointers enable to skip over elements at di�erentgranularity. SkipNet allows for ontrol of the loation where the data is stored in theoverlay, thus inreasing availability and seurity. Nodes are referened by their uniquename identi�er. Instead of using a list, the overlay is organized as a double-linked orderedring of N nodes; eah node stores a routing table ontaining 2log(N) pointers organizedas log(N) levels with 2 entries eah. Referenes at higher levels enable longer jumps (orskips) in the overlay. Pointers at level h in the table refer to nodes that are approximately
2h hops to the left and right in the base ring. Instead of using a preise distane measure,these nodes are determined by splitting the ring at the lower level and probabilistiallyassigning nodes to the resulting rings. Figure 2.10 illustrates the resulting levels and ringsin an example SkipNet omposed of 8 nodes. At eah level, nodes are ordered by theirname identi�er in their orresponding ring. The latter determines the numerial identi�erof the node, so that eah node in a ring at level b shares the same high-order b bits of thenumerial identi�er. Routing table N3Level Left Right0 N2 N41 N1 N52 N7 N7Figure 2.10: Example SkipNet infrastruture and routing table for node N3.Lookup proedure SkipNet supports both routing by the name identi�er or by thenumerial identi�er. To route a message by name, a node �rst heks the name identi�erto see if the message has to be forwarded left or right aording to the shared pre�x. Ifthe message and the node identi�er share no ommon pre�x, a random diretion is hosen.Subsequently, at eah hop, nodes forward the message to the farthest node whose identi�eris not greater than the destination, by sanning the routing table starting from the highestlevel. In the example overlay shown in Figure 2.10, a message from N3 to N6 is forwardedto the left and to a referened node at level 1, namely N5. To route a message by numerialidenti�er, the algorithm begins by looking for a node in level 0 whose numerial identi�er's�rst digit mathes the target's numeri identi�er �rst digit. The algorithm then moves tothe node's ring of level 1, and repeats the searh by looking at the seond digit. After a�nite number of steps, the destination is found.



24 Chapter 2. Peer-to-Peer SystemsJoining and leaving When a node joins the overlay, it �rst needs to �nd the top-levelring that orresponds to its numeri identi�er. This is ahieved by routing a message tothat numeri identi�er. From this point on, the node retrieves its neighbors in the ringand in lower level rings by similarly looking for its name identi�er. When a node leavesonly the ring links at level 0 have to be repaired: this is performed by a repair proess runeither upon noti�ation of the leaving node itself, or as soon as the departure has beendeteted by its neighbors.2.3.9 P-GridP-Grid [14℄ builds upon a binary pre�x tree (also known as trie) and uses pre�x mathingto resolve queries. Eah peer is assoiated with a leaf in the tree, and is responsible fora set of keys omposing its key spae partition. The pre�x of a binary representation ofthe data managed by a peer p determines its position in the tree, i.e. its path π(p). Inontrast to hierarhial solutions, the tree struture is not re�eted in the atual topologyonneting the peers. Aordingly, nodes have to maintain routing tables that point tonodes managing di�erent subtrees thus di�erent zones of the key spae, and update themusing an epidemi protool. More spei�ally, eah peer p stores referenes to other peerssharing a ommon path pre�x of length l with p, but with the last bit inverted. Toenable e�ient range queries, ontent's keys are omputed using an order-preserving hashfuntion. Routing table Al Pre�x Node0 1 E1 01 BFigure 2.11: Example P-Grid and routing table for node A (π(A) = 000). Atual linksare not determined by the struture of the binary tree but by the ontents of eah node'srouting table.An example of P-Grid is depited in Figure 2.11: the key subspae is divided arosspeers aording to the keys' pre�x. Node A manages the 00 pre�x, nodes B and C bothmanage the 01 path to inrease fault-tolerane, node D is responsible for 10, while nodes
E and F store data with pre�x 11. The illustrated routing table of node A ontainsreferenes to node E (with path 11, sharing no ommon pre�x with π(A)), and B (withpath 01 sharing a ommon pre�x of length 1 with π(A)).Lookup proedure To look up a key in the overlay a node �rst heks whether its pathis inluded within the key bit string. In this ase, the key is stored within the peer andthe assoiated ontents an be returned. Otherwise, the routing table is onsulted and therequest is forwarded to a node whose path better mathes the key's pre�x. The expetedost for a lookup operation is O(log(N).Joining and leaving When a peer onnets to the overlay, the key spae is divided andshared with the inoming peer. If two peers are responsible for the same partition of the



2.3. Strutured Solutions 25key spae (i.e. they have the same path) they exhange referenes; if only a pre�x of thepath is shared, the peer with the shorter key path extends its key by taking over some ofthe keys.2.3.10 Other approahesBeside the systems presented in the previos subsetion, we brie�y review here other notableexamples of strutured overlays.HyperCuP [251℄ employs a hyperube graph and guarantees that nodes are visitedexatly one during a lookup operation (i.e. there is no retransmission of messages).Beause HyperCuP merely proposes an overlay struture for e�ient broadast, it is notonerned with alloating data to nodes or routing requests to partiular nodes as in aDHT. In this respet, e�ient broadasting in an overlay of N nodes an be ahieved with
N − 1 message forwards. An extension of the protool that uses semanti data to routemessages and redue network overhead is presented in [244℄.Cyloid [261℄ employs a d-dimensional hyperube that forms a ube-onneted yle(CCC) [225℄ struture where eah vertex is a yle of d nodes. In omparison to othersolutions, eah Cyloid node has a small and onstant degree in that it maintains exatlythree onnetions: two yli onnetions and one ubial onnetion. This redues main-tenane osts in highly dynami systems. An improvement over Cyloid that ombinesthe CCC struture with a folded hyperube is presented in [187℄.Kelips [137℄ divides nodes into k a�nity groups (0. . . k − 1). Eah node maintainsreferenes to nodes in its a�nity group, in other a�nity groups, and referenes to �lesshared by other nodes. This information is updated by means of periodially gossipingpartial state information. In ontrast to other strutured approahes, Kelips is simpler,beause there is no strit underlying topology (ring, hyperube, et.) to be maintained.Lookup requests are progressively forwarded toward nodes that are loser to the target.Kelips has been used to implement a web ahing mehanism, namely Kahe [191℄.Symphony [198℄ uses a ring struture mapping nodes onto the key spae (like Chord).Nodes maintain a link to their suessor and predeessor in the ring, and a number oflong distane ring shortuts. Shortuts are hosen randomly aording to a harmonidistribution, whih results in large jumps in systems with few nodes, and short jumps inlarger systems. The harateristis of the overlay re�et the small world phenomenon [206℄(refer to Setion 2.4.1), and its onstrution is based on the method proposed in [174℄.2.3.11 Multi-attribute, range, and semanti queriesDistributed Hash Tables are very e�ient in mathing lookup queries, by �nding the valueunivoally assoiated with a given key. A number of appliations nonetheless depend onrange or multi-attribute queries that look up for values that lie in an interval between twokeys or are the union of di�erent attributes. For example, in a distributed database of



26 Chapter 2. Peer-to-Peer Systemsgeographial data, typial queries may involve �nding all points within a distane of 100mfrom a given loation. A possible solution to this problem is to divide the interval to beretrieved into a disrete number of points and initiate a query for eah of those points.This nonetheless involves a trade-o� between the e�ieny of a searh operation and thegranularity of the results.To support range searhes in a Chord-like overlay, Chord# [255℄, replaes onsistenthashing with an order-preserving hashing. An order preserving hash funtion h ensuresthat if a < b, then h(a) < h(b); range queries an thus be resolved by �rst loating nodesstoring the values of a and b in the overlay, and then visiting all nodes between them. Arouting sheme, named SONAR, that adds support for multi-dimensional range queries ispresented in [254℄. Other solutions enabling range-queries in Chord are MAAN (Multi-Attribute Addressable Network) [60℄ and [138℄, whih employ a loality sensitive hashing(LSH) [154℄ funtion to map similar data to nearby identi�ers with high probability.The work presented in [24℄ proposes an extension of CAN that enables e�ient rangequeries for a grid middleware. The presented approah uses a spae �lling urve [247℄(namely a Hilbert urve) as hash funtion: eah peer is responsible for a subinterval of thedomain [0, 1], whih represents the admissible attribute values that an be stored in theDHT. A range lookup �rst loates the zone ontaining the middle point of the requestedinterval, and then propagates the request to lose-by zones until all points in the intervalhave been found.As desribed in [235℄, pre�x hash tries (PHT) an be adapted to address range queries;this tehnique has been suessfully implemented inP-Grid by means of an order-preservinghash funtion to generate ontent's keys [90℄. Skip graph based strutures have also provedto be a viable solution for both range and multi-dimensional queries: beside the previouslyited SkipNet [140℄, examples inlude SkipIndex [308℄ and Skip Tree Graph [132℄.Merury [39℄ implements a query routing mehanism that supports multi-attributeand range requests. Nodes are grouped into hubs that luster all the data related to aertain attribute, and queries are routed toward the hubs responsible for their ontents.Furthermore, a ring topology is used to onnet nodes within hubs, enabling e�ient rangequery resolution.Other solutions that enable range and/or multi-dimensional queries in DHTs are: [218℄,implementing range-queries over the Bamboo DHT [237℄, [34℄, presenting an extensionof Pastry to supports range queries, [168℄, extending Chord with support for rangequeries and load balaning, [91℄, proposing a reursive partition searh method, [186℄,desribing a distributed searh sheme supporting both range and multi-attribute queries,and [192℄, introduing support for multi-dimensional omplex queries by means of R*-trees[35℄. Finally, a omparative analysis of ommon DHTs with support for multi-attributeand range searh systems is presented in [260℄.Semanti queries an be viewed as a natural extension of multi-attribute and rangequeries. A notable drawbak of the latter is the lak of a notion of semanti similarity,thus words like ar and vehile are not onsidered as related. In [277℄ two solutions forsemanti-based full-text searhes based on CAN are proposed, employing vetor spaemodel (VSM) and latent semanti indexing (LSI). Douments are organized so that re-lated douments are stored loser in the key spae. In the VSM solution, eah node isresponsible for storing referenes to ertain keywords, thus a doument retrieval operation



2.4. Unstrutured solutions 27is deomposed into several lookups for eah of the searh terms. In the LSI solution, thesemanti vetor is mapped into oordinates in the CAN spae: doument retrieval �rstloates the orresponding point, and then multiasts the request to (semantially) nearbynodes. Another solution [59℄ extendsMAAN [60℄ to support RDF1 meta-data storage andretrieval.2.4 Unstrutured solutionsUnstrutured systems are not based on deterministi overlay topologies and do not enforepreise rules on the plaement of data in the overlay. Aordingly, the information sharedby nodes and the logial onnetions between them are unrelated. To some degree, unstru-tured systems are freely onneted overlays that mimi soial relationships between peers,and where information retrieval relies on multiast ommuniation. While less e�ientthan DHTs, unstrutured solutions are simpler to maintain and allow for more omplexqueries suh as free text searh. Beause unstrutured peer-to-peer topologies are not re-ated and maintained by a deterministi proess, it is often di�ult to understand theirdynamis in order to enable e�ient ommuniation and robust operation. Nonetheless,researh has ome up with models that repliate the harateristis observed in real-worldomplex networks and enable a deeper understanding of their features. Aordingly, beforereviewing existing peer-to-peer solutions, we brie�y present ommon models of omplexnetworks; an in depth disussion on omplex networks harateristis an be found in [87℄.2.4.1 Complex network topologiesUnstrutured networks are examples of omplex networks where there is no apparent stru-ture. While we refer to unstrutured solutions as overlays onstruted without relying on adeterministi algorithm, there exists some degree of ontrol over the desired harateristisof the resulting topology. Thus, while it might not be possible to reognize regular patternsin the underlying graph, a oarse lassi�ation of unstrutured topologies based on mainfeatures is nonetheless possible. The graph's degree distribution is one of suh features,and it is the prinipal measure of analysis of omplex networks.Random graphs (Erdös-Rényi) Random networks [265, 105℄ an be onsidered as thesimplest example of omplex networks [87℄. A generative model for onstruting randomnetworks by onneting all pair of nodes with uniform random probability has been in-trodued by Erdös and Rényi [105℄. Random graphs exhibit small diameters [45, 46℄ (oflogarithmi or polylogarithmi growth), and node degrees following a binomial distribution[19, 156℄. Whereas initial studies on random networks aimed at developing mathematialmodels for studying real world phenomenons, it was later proved that most real-word net-works annot be satisfatorily represented by the Erdös-Rényi model. The major issuesare related to the di�erent degree distribution and smaller lustering oe�ients to whatan be observed in real networks. Researh showed that it is nonetheless possible to al-gorithmially reate models mathing or approximating real networks degree distributions1http://www.w3.org/RDF



28 Chapter 2. Peer-to-Peer Systems[216℄ by employing di�erent probability distributions [214℄ or onstrution models basedon rewiring methods [208℄.Small world networks (Watts-Strogatz) The �small-world phenomenon� [31℄ was�rst observed by Stanley Milgram during his soial studies in the 1960's [206℄. By meansof a simple experiment, it was shown that people are typially linked by short hains ofaquaintanes; that observation gave birth to the myth of �six degrees of separation" [293℄.Beside short average path lengths, small world networks are haraterized by high onne-tivity within small group of nodes (high lustering oe�ient). In partiular, this latterondition di�erentiates graphs with small-world properties from other random graphs.Graph-theoreti analysis of small-world networks led to the development of generativemodels [213, 215℄, suh as the popular one proposed by Watts and Strogatz [292℄, as wellas distributed algorithms to rewire an existing network into one with small-world har-ateristis [101℄. Appliations of small-world networks for omputer networks have beenanalyzed in [174, 175, 249℄; in this respet, the problem of navigability of suh networks isof partiular interest for routing information using the loal information of eah node. Asmall-world network of N nodes is said to be navigable if a deentralized routing algorithm,exploiting only loal information and information about the target node, enables routingin a number of steps proportional to log(N) [174℄.Sale-free networks (Barabasi-Albert) Sale-free graphs [185℄ model networks withpower-law degree distribution, where a large number of verties have small degrees, andfew verties have very large degrees (hubs). As proposed in [32℄, sale-free graphs an beonstruted by a random proess where links are added between nodes using preferentialattahment: the probability of reating a new onnetion to a node is proportional toits urrent degree. Sale-free networks inherit from random networks the harateristiof small diameters [80, 79℄, but the di�erent degree distribution provides a better mathfor many examples of real-world networks, e.g the Internet, air tra� routes and airports,et. Several researh studies have analyzed the robustness of sale-free networks againstrandom node failures and vulnerability to targeted attaks [20, 135, 85℄. It has been shownthat while sale-free graphs are more robust against random faults than random networksof omparable size, the latter better ope with targeted maliious attaks [47℄. This issueis related to the presene of hubs that, if targeted by an attaker, quikly ompromise theonnetivity of the whole network.2.4.2 Searh in unstrutured overlaysSearh in early peer-to-peer systems suh as Napster [9℄ relied on entralized indexesthat provided the requesting peer with addresses of nodes storing the desired ontent;atual transfer of data was arried out by peer-to-peer interation between nodes. Inontrast to DHTs, in unstrutured overlays it is not possible to easily determine whihpeer shares the desired information, thus fully distributed searh is typially performedwith a �ooding protool [94℄. Flooding involves sending the query, whih desribes thesearh parameters suh as the name of a �le, to some nodes in the overlay (typially thetopologial neighbors of the node initiating the request). Reipients loally determine



2.4. Unstrutured solutions 29if the request an be ful�lled (based on their own ontent) and eventually respond tothe initiating peer. Otherwise, the query is further forwarded to other nodes. To avoidforwarding queries for an unde�ned number of steps, eah node an store a referene toreently proessed messages, and avoid retransmission if the same message has alreadybeen reeived. Moreover, beause the size of the network is not known, eah messagehas an assoiated lifetime (Time-To-Live, or TTL, Hops-To-Live, or HTL) value whihdetermines the maximum number of times it an be forwarded. While being simple toimplement, basi �ooding has a number of drawbaks. Beause of its non-deterministinature, �ooding annot guarantee that all nodes that own the queried objets will beontated, likewise most of the nodes proessing a query will likely not be able to ful�ll it.Beyond that, beause of the topology of the network, �ooding results in an exponentiallygrowing amount of messages, whih is aggravated by retransmissions that may our intopologies with many redundant links [195℄.The number of nodes ontated an be limited by employing di�erent traversal andbroadast poliies. Beause it is often not neessary to reah all nodes in the overlayto ful�ll a query (the answer might just be found by ontating few lose-by peers), itis worthwhile to avoid forwarding to all neighbors or for an extensive number of hops.Meanwhile, adaptive overlay networks [181, 124℄ or hybrid topologies (i.e. super-peers[302℄) an be employed to limit the problem of message retransmission and redue overhead.In the following, some existing improvements will be reviewed: in this respet, it is pos-sible to make a distintion between uninformed (blind, or state-less) methods and informed(heuristi-based, or state-full) ones [283℄. Uniformed methods do not rely on semanti in-formation and at upon the �ooding mehanis (TTL, number of ontated neighbors,et.). On the ontrary, informed methods make use of heuristis based on semanti infor-mation about the query to diret the searh toward peers that are most likely to providean answer. An in-depth review and analysis of searh methods for unstrutured overlaysan be found in [241, 306, 283℄.Traversal tehniques A traversal tehnique is the algorithm that de�nes the order inwhih nodes are visited during a query operation. Two ommon algorithms exist: breadth-�rst and depth-�rst. Breadth-�rst traversal visits nodes at progressively inreasing dis-tane, up to a prede�ned depth (TTL). In the example network depited in Figure 2.12, abreadth-�rst query initiated at node A with TTL equal to 2, will �rst be forwarded to nodes
Z,C,E (one hop distane from A), then to P,Q,F, S,R,B (two hops distane); nodes N,Kwill be omitted beause they lay at a three hops distane from A. Depth-�rst traversalontats nodes in one diretion at time with baktraking. In the example in Figure 2.13the visiting order for a depth-�rst query initiated by A might be Z,F,Q, P,C,E,B,R, S.Breadth-�rst traversal an ahieve good response time beause queries an be easily par-allelized (nodes at eah level an be visited at the same time), but is prone to generatingmore tra� [196℄. Conversely, depth-�rst searh is more e�ient but an result in longerdelays [167℄.Iterative deepening If the requested information has a high probability of being foundnear the requesting node, �ooding with inreasing depth, also known as iterative deepen-ing, an signi�antly redue the overall tra� [195℄. Queries are �rst broadasted with
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Figure 2.12: Example breadth-�rst traversal in an unstrutured topology, with Time-To-Live equal to 2.

Figure 2.13: Example depth-�rst traversal in an unstrutured topology, with Time-To-Liveequal to 2. Last steps omitted for simpliity.small TTL values, using a breadth-�rst approah; the TTL value is progressively inreaseduntil either a result is found, or an upper limit is attained. A more advaned solutionthat dynamially adapts the TTL aording to the popularity of the searhed ontent ispresented in [162℄.Random walks In ontrast to basi �ooding, random walk [195, 127, 199, 239℄ forwardsthe query to just one neighbor at time. The query randomly walks on the overlay un-til the target information is found, a pre-determined maximum number of hops has beenreahed, or the information has been found by some other walk. In the latter ase, peershave to ontat the originating node and hek if the query still needs to be forwarded



2.4. Unstrutured solutions 31or not [195℄. While this approah signi�antly redues the amount of tra� produed bysearh messages, the response time inreases beause the probability of obtaining resultswithin an aeptable number of hops is redued [129℄. An improvement of this tehniqueinvolves starting k multiple onurrent random walks [195℄ (k random walkers) in orderto inrease the probability of hitting a target. In [41, 42℄, random walk parameters areadapted aording to the popularity of the searhed ontent. Furthermore, random walksan be ombined with shallow �ooding (i.e. �ooding with small TTL) to provide informa-tion about nearby nodes [16, 205, 128℄, hene both inreasing the probability of suessand reduing response time. Finally, [310℄ studies the onvergene of random walking indi�erent types of networks and with di�erent random neighbor seletion distributions. Anexample of random walk and k-random walk is depited in Figure 2.14 a), respetively b):in eah step, eah walker is forwarded to a random neighbor.

Figure 2.14: Example random walk (a) and k- random walk (b) in an unstrutured topol-ogy, with Time-To-Live equal to 4 and k=2.Teeming Flooding protools visit a large number of nodes at eah forwarding step be-ause all neighbors of the urrent node are ontated. If the queried objet is very popularaross the network, forwarding the query to just a smaller number of neighbors still has ahigh probability of retrieving it. On this basis, probabilisti �ooding protools (or teeming)[167, 94℄ forward the query only to a random subset of all available neighbors on eah node,namely they forward to eah neighbor aording to a �xed probability. A further improve-ment of this tehnique, alled teeming with deay [184℄, involves reduing this probabilityas the number of hops inreases. While teeming also results in an exponential growth ofthe tra� as the query travels deeper in the network, the growth is slower than in pure�ooding.Seletive forwarding Teeming redues the amount of tra� by limiting the number ofvisited neighbors, regardless of the fat that ignored peers might be able to ful�ll the query.If some information about neighbor nodes is known a priori, the forwarding algorithmmight be able to hoose whih peer is best suited to send the query to: this tehniqueis known as seletive forwarding or guided searh. In [16, 290℄ queries are routed towardnodes with higher degrees. Similarly, in [219℄ nodes probe their neighbors before forwardingthe query, in order to �nd the one with the shortest round-trip time. In [83℄, the authors



32 Chapter 2. Peer-to-Peer Systemspresent a searh mehanism that uses ompound routing indies to selet the best queryrouting path. Suh indies de�ne the goodness (i.e. probability of �nding a mathingdoument) of eah outgoing path onerning a given topi, and are periodially updated byaggregating information about shared douments on nodes in eah path. Following a similarpriniple, other solutions [153, 224℄ employ Bloom �lters [56℄ to determine whih forwardingpath is more likely to lead to the queried objet. Another approah [284℄ determines thedesirability of a neighbor based on previous interation: if forwarding to a given neighborresults in a suess its goodness is inreased, otherwise dereased. The appealingness of aneighbor an also be omputed by ombining several metris, suh as the ommuniationost, the node's degree, or the amount of shared information [313, 268, 298, 163℄.Repliation All aforementioned searh tehniques involve a trade-o� between the prob-ability of ful�lling a query and the resulting network tra�. In this ontext, repliationplays an important role in improving the e�etiveness and e�ieny of searh methods.Whereas in �le sharing networks ontent might be naturally repliated by the interationbetween peers (for example, a popular song downloaded and then shared by a large numberof users), in other peer-to-peer systems an ative repliation mehanism might be needed.We note that repliation an either involve a full replia of an objet, or just a refereneto the node storing that objet. The simplest repliation strategy is one-hop repliation,where eah node knows its neighbors' identities or shared resoures, and an thus reply toqueries on their behalf. Several replia alloation strategies have been thoroughly analyzedin [78℄: uniform, proportional to the number of requests (whih has been further analyzedin [278, 279℄), and proportional to the square-root of the query rate. While the �rst twolead to omparable results, the latter yields optimal performane. An evaluation of dis-tributed repliation algorithms that onverge to square-root alloation has been ondutedin [78℄, and on di�erent network topologies in [195℄. In the latter, two easily implementedrepliation methods are also proposed: owner repliation, where upon a suessful searhthe objet is repliated on the requesting node, and path repliation, where the objet isrepliated on all nodes along the path between the providing and the requesting node.The bene�ts of repliation in random-walk protools are also illustrated in [242℄. Otherrepliation strategies are disussed in [280℄, where a repliation strategy based on the pop-ularity of the ontent and employing an optimal replia plaement mehanism is proposed.It is important to note that repliation an also be bene�ial to strutured peer-to-peersystems, as shown in [229, 233℄.Topology optimization The topology of the network has great in�uene on the e�-ieny of a searh protool [70, 111℄. Even without introduing struture into the network,it is possible to optimize the overlay in order to support e�ient forwarding. In this on-text, several studies [181, 288, 139, 124℄ have proposed solutions for e�ient multiasting,alled topology-aware or proximity-aware, that adapt the overlay at runtime to math theunderlying topology. These solutions minimize both retransmissions at the network leveland delays. Other solutions employ super-peers [302℄ to redue �ooding tra� by reatinga two-level overlay where a small number of high-apaity peers are eleted to ahe infor-mation and route queries for a large number of normal peers. A proximity-aware overlaybased on super-peers has been presented in [161℄.



2.4. Unstrutured solutions 33Other improvements Beside the aforesaid methods, there exist other tehniques toimprove the e�ieny of searh in unstrutured networks. With non-forwarding searhshemes [303, 188℄ eah peer maintains a loal ahe with a number of addresses of otherpeers. To maintain this ahe, eah peer periodially selets an entry and sends to theorresponding node some of the addresses in the ahe, similarly to the operation of a gossipprotool. When a searh query is initiated on a peer, eah node in its ahe is iterativelyprobed for a result; when a peer is probed it returns a sample of its ahe, providing newentries in the ahe of the probing peer. Beause searh is managed loally by one peer,the generated tra� an be aurately limited and does not result in exponential growthas with �ooding.In [84℄, the authors propose to exploit the semantis assoiated with ontents sharedby eah node to onstrut di�erent overlay networks for eah possible topi. Nodes mayjoin several overlays, and queries an be e�iently resolved by forwarding them to theappropriate overlay. A similar approah based on the reation of semanti groups is dis-ussed in [77℄. In [73℄ a self-organized solution that extends the topology of the overlayaording to the results of previous searhes, hene promoting the emergene of stronglyonneted semanti ommunities, is presented. A number of outgoing links on eah peerpoint toward nodes that are more likely to share ommon interests, thus providing pathsto quikly resolve future queries. Other approahes [114, 291℄ luster semantially similarinformation in order to inrease the reall rate one a result for the query is found. Aswith other resoure disovery improvement tehniques, lustering an also be applied tostrutured overlays, as in [147, 113℄.The bio-inspired solution proposed in [204℄ uses pheromone trails that are laid on theoverlay and are linked to searh topis. Queries are routed on the overlay following thepath with the highest pheromone onentration; depending on the suess of the query,the onentration on a path may be further reinfored, or not. Similar bio-inspired routingmehanisms are presented in [296, 108℄.In the following we review some popular unstrutured systems, and highlight theirfuntional design.2.4.3 GnutellaThe Gnutella protool [3, 238℄, was quikly developed after the demise of the Napster[9℄, to reate a replaement for the popular �le-sharing network. Napster was the �rstsuessful deployment of a hybrid peer-to-peer �le sharing system that relied on a en-tralized indexing server and deentralized ontent provisioning. Legal issues led to theshutdown of Napster servers in 2001 [133℄, rendering the network unoperable. In orderto overome the weakness of the latter, Gnutella proposed a fully deentralized searhprotool based on �ooding that removed the need for a entralized indexing servie thusoveroming the risk of further shutdowns. Later versions of Gnutella implemented asuperpeer infastruture, in order to redue the overhead of �ooding. In the following, wereview both basi Gnutella protool [4℄, as well as improved developments suh as [5℄and [69℄.



34 Chapter 2. Peer-to-Peer SystemsMessage routing Gnutella employs just �ve types of messages: Ping, Pong, Push (torequest the transmission of a �le), Query (to searh for a �le), and QueryHit (to suessfullyrespond to a Query). Pong and QueryHit messages are sent in reply to Ping, respetivelyQuery messages. All messages exhanged by Gnutella peers are additionally labeledwith a unique identi�er and ontain a TTL value to limit the number of times they an beforwarded. This identifer helps deteting and avoiding possible message retransmissions,as well as enabling routing of responses. Conerning routing, the protool requires allresponse messages to be sent along the same path followed by the request; hene, peersmaintain a routing table that stores the identi�ers of the reeived pakets, their soure peer,and their destination peer if they have been forwarded. If a node reeives an unexpetedreply message (Pong, QueryHit, or Push) it will not further forward it.Joining and leaving Peers an join the Gnutella network by onneting to a nodealready in the network. A ahe server supports the bootstrap proess by providing a listof peers. The node requests the onnetion and if aepted beomes part of the network.Eah node periodially sends a Ping message to eah neighbor: upon reeiving a Ping, anode replies with a Pong message that ontains its address to notify its presene, and thenforwards the Ping on the network (up to a prede�ned distane). Pong replies are routedbak along the same path that arried the orresponding Ping. With Pong messages nodesan thus disover new peers and reate new onnetions.

Figure 2.15: Joining and Leaving the Gnutella network.An example of the proess of joining the network is illustrated in Figure 2.15. Node
W �rst requests a list of peers from the bootstrap ahe server (steps 1 and 2); W thentries to onnet to a random node from the list (3), A in our example. The onnetion isaepted (4), and W beomes part of the overlay. At some point, N pings its neighbors(5): eah node reeiving the Ping message replies with a Pong that is routed bak to N ,whih �nally disovers W (6).Searh Gnutella 0.4 uses a breadth-�rst �ooding protool to forward its requests onthe overlay enapsulated in a Query message. Nodes that share a �le mathing the requestan reply with a QueryHit message. To request a �le transfer, the requesting node replies



2.4. Unstrutured solutions 35to the QueryHit with a Push message. Atual transfer of the �le is ahieved using theHTTP protool.Sine protool version 0.6 [5℄, Gnutella employs a super-peer approah, by groupingpeers into leafs and ultrapeers. Eah leaf peer is onneted to several ultrapeers, to whihit sends its shared keywords, whereas ultrapeers are onneted together. The superpeerdesign redues tra� and the number of hops traveled by eah query, improving responsetime. The Gnutella2 protool [6℄ (a fork of protool version 0.6 that employs random-walk instead of �ooding) is also based on superpeers.Further researh TheGnutella protool has been the subjet of several studies aimedat understanding the dynamis of peer-to-peer interation, as well as at providing adjuste-ments to inrease the e�etiveness and e�ieny. In depth analysis of Gnutella networksare the fous of [238, 15, 270℄; moreover [305, 26, 212℄ give insights about the seurity ofGnutella: in partiular, onerns suh as Denial Of Servie (DOS) attaks and maliiousontent spreading are analyzed, and solutions are disussed.Improvements of Gnutella have been onsidered by Gia [69℄, whih takles the prob-lem of searh e�ieny, and proposes to inorporate a number of tehniques to amelioratethe salability of the system. More spei�ally, Gia employs biased random walks thatsteer queries toward nodes with higher degree, one-hop repliation, topology adaptationto ensure that only high-apaity nodes have high-degrees, and tra� ontrol to adaptthe network load to the apaity of eah node. Gia developers prove that the proposedsolution enhanes the overall operation of the system by signi�antly reduing the tra�,while retaining the simpliity and �exibility of Gnutella.2.4.4 FreenetThe Freenet projet [75℄ aims at reating a distributed doument storage on an un-strutured overlay with small-world harateristis. The network operates on the prinipleof a darknet [40℄, and enables partiipants to store and retrieve doument anonymously.Freenet exploits the fat that small-world networks are navigable [249℄ to ensure theonvergene of the employed greedy routing protool.Message routing Nodes and shared objets are univoally identi�ed using hash keys.Nodes' keys are randomly generated, whereas objets' keys are an hash of their ontents.Freenet uses key-based routing to insert or retrieve ontent. With the help of a routingtable maintained by eah peer, objet queries are routed toward the node with the losestmathing identi�er. The routing table is updated when reeiving query replies. As the sizeof the table is limited, a Least-Reently-Used algorithm is employed to leanup old entries;an enhaned entry replaement algorithm has been proposed in [308℄.Joining and leaving Nodes join the overlay by ontating some nodes in the overlay;the latter add the newomer's identi�er in their routing tables. With time, the nodewill hopefully reeive requests to publish �les and reply to queries that losely math itsidenti�er.



36 Chapter 2. Peer-to-Peer SystemsSearh To searh for a �le, the requesting node omputes the key of the �le and sends itto itself. Eah query has an assoiated expiration time (TTL): if the query is not answeredwithin its TTL, it is onsidered as failed. Upon reeption of a query, a peer heks in theloal storage to determine if it owns the requested objet. If the �le is not found in theloal storage, the query is forwarded to the node in the routing table assoiated to the keylosest to the requested one. If a node that has already been ontated is reahed, therequest is returned to the previous node, whih then tries to ontat the peer assoiatedwith the next losest key in the routing table. When a peer sharing the requested �le isfound, a suess message is sent bak along the path traveled by the query until startingnode. Eah node traversed by the reply updates its routing table and stores a opy of the�le.To publish a new objet, the request is routed similarly as if the objet is being queried:eah traversed node heks against ollisions (existing objets with the same identi�er). Ifno ollisions are deteted, the objet is published on eah node along the path.

Figure 2.16: Freenet query routing.Figure 2.16 depits an example of messages exhanged during searh in a Freenetoverlay, numbers indiate steps in the proess. We suppose that a user request for anobjet with key T . The request is handled over to node A, whih forwards it to the losestknown mathing node, E. The query fails, and E forwards it to its losest mathing node,
Y , failing again to loate the objet. The node then forwards if to the seond-losest node,but this subsequently results in the query returning to E. The query is �nally forwardedto F , and �nally to T (where the requested objet is found). The reply is forwarded bakto A on the same path as the query.Further researh A hange of the routing protool to improve its e�ieny has beenproposed in [74℄: the idea is to exploit information about response times, time to estabilisha onnetion, and suess rate, to selet the best path to forward a query to. Whilethe latter indeed results in better routing performane [249℄, the proposal for suh a newprotool was subsequently withdrawn in favor of a simpler approah in Freenet 0.7.



2.4. Unstrutured solutions 372.4.5 Kazaa/FasttrakFasttrak [7℄ is a proprietary �le-sharing protool based on a super-peer arhiteture, andemployed by the popular Kazaa lient [8℄. Due to the losed and enrypted nature of theprotool, preise information is relatively sare; nonetheless, reverse engineering throughtra� sni�ng and analysis [182, 189℄ enabled a better understanding of the ommuniationbetween ordinary peers and superpeers and the development of opensoure lients [2℄. Inpartiular, our review is based on the information provided in [189℄.Joining and leaving At startup, ordinary nodes probe the onnetion with severalandidate superpeers and retain the best suited one. It is assumed that FastTraktakes loality and workload into aount, by having ordinary peers preferably onnetedto loseby superpeers whose workload is low. The workload of a superpeer is related to thenumber of onnetions it maintains with ordinary peers; seletion of the parent superpeeris based on this measure and provides a load balaning e�et. After the initial onnetion,a peer reeives list of additional superpeers that are ahed for later use.Fasttrak promotes ordinary peers to super-peers when higher performane andonnetivity than globally de�ned thresholds are deteted; superpeers maintain onnetionswith eah others and form the bakbone of the system.Searh Superpeers index the ontent shared by normal peers: eah objet is identi�edby its hash. To searh for a �le, an ordinary peer sends the query to the superpeer towhih it is onneted. After the latter replies, the peer onnets to other superpeers togather additional results, and remains onneted to the last ontated superpeer. Onsuperpeers, queries are resolved by onsulting the loal index and by eventually ontatingother superpeers: the tra� analysis in [189℄ reveals that superpeers do not exhange theirindies.2.4.6 SaxonsSaxons [262, 263℄ maintains an overlay with low lateny, high bandwidth paths, as well assmall distanes. The overlay provides e�ient multiast ommuniation aross the overlaythat an be exploited to deliver higher level servies. In addition to overlay neighbors,eah node maintains a dynamially hanging set of peers' addresses, a number of whihis periodially sent to neighbors; the identi�er of the node sending the information mightbe within the transmitted list, allowing the node to spread its identity aross the overlay.Nodes periodially measure the lateny and bandwidth of known nodes, and add themas ative neighbors (possibly replaing existing ones) aording to the desired struturequality and the maximum allowed node degree.It is important to stress the fat that Saxons does not implement any spei� queryingmehanism, but leaves the hoie to appliations implemented on top of it. Nonetheless, theauthors experimented with a Gnutella-like �ooding protool and obtained redued latenyand inreased bandwidth ompared to a random overlay built on the same underlyingnetwork.



38 Chapter 2. Peer-to-Peer SystemsJoining and leaving A node onnets to the overlay by aquiring a random list of nodesfrom the loal set of an existing (bootstrap) node, and subsequently trying to establishonnetions with peers in suh list. The node then starts periodi exhanges of its loalset with other peers, in order to gain knowledge about the network.2.4.7 UMMUMM [239, 240℄ (whih stands forUnstrutured Multi-soure Multiast) uses a self-organizedadaptation mehanism to optimize an unstrutured overlay with the goal of improvingbandwidth and reduing ommuniation lateny in multi-soure multiast ommuniation.UMM uses a two layer arhiteture separating the tasks of maintaining a base overlay andof disseminating the information in an e�ient way. Connetions in the base overlay arearranged both to redue lateny and to inrease available bandwidth, similarly to Saxons.UMM onstruts and maintains e�ient multiast distribution paths by deteting andavoiding dupliate tra�. The system monitors inoming tra� and heks for dupliatemessages; if dupliation is deteted, the soure of the message is informed not to forwardfurther messages through the same path (alled tunnel). The onnetion between twonodes is not permanently removed, but temporarly �ltered; to prevent partitioning of theoverlay in the event of a rash, �lters are reset when failures are deteted.Figure 2.17 illustrates the dupliate message detetion: in the �rst step (a), Amultiastsits message to its neighbor E, with a lateny of 70ms. The message is further transmittedfrom E to S and B with a lateny of 40ms, respetively 210ms (b). In the last step (),
S forwards the message to B; the latter will �nally reeive the message from both S and
E: deteting the dupliation, B will ask E to �lter the tunnel (E to B), thus avoid usingit for forwarding messages from A.

Figure 2.17: UMM dupliate message detetion.Joining and leaving When a node onnets, it gathers the addresses of a number ofpeers by ontating a node in the overlay. These addresses de�ne the initial neighborsfor the base overlay. Information is further exhanged with other nodes by means of anepidemi protool. Periodially, an optimization proess measures the link quality for arandom subset of known nodes, in order to determine tunnels optimized for lateny andtunnels optimized for bandwidth.



2.4. Unstrutured solutions 392.4.8 PhenixPhenix [10℄ onstruts a low-diameter overlay with power-law degree distribution withthe goal of o�ering faster query response time. Furthermore, the identity of high-degreenodes is hidden, to prevent maliious users from attaking them, and inrease resilieny.Joining and leaving A node ni wanting to onnet to the Phenix overlay requestsa list of addresses of peers in the overlay from a ahe server. The list is divided intotwo subsets, Grandom and Gfriends. The node ni then sends a ping message to all peers in
Gfriends: upon reeiving the ping, peers reply with a pong message that ontains the list oftheir own neighbors. The ping message is then forwarded one more step into the network:nodes reeiving it, add ni to a temporary list Γ. All neighbors of nodes in Gfriends areinserted into a Gcandidates list, whih is sorted aording to the frequeny of appearane.The topmost nodes are thus the nodes that are most known in the network, and are used toreate the Gpreferred list. The �nal neighbors of ni are the union of Grandom and Gpreferred;subsequently, for eah neighbor node in Gpreferred, ni tries to establish a onnetion: ifaepted, the identi�er of the node is moved to the Ghighlypreferred list, respetively ni isadded to Gbackward on the aepting node. A node may refuse a onnetion beause themaximum number of neighbors has already been reahed.Thanks to the neighbor seletion proess, nodes that have a high-degree will preferablyhosen as neighbors by inoming nodes. Random neighbors are nonetheless kept to improveresilieny.Resiliene to attaks Phenix employs di�erent mehanisms to protet the networkfrom targeted attaks. On one side, the system attempts to hide the identity of high-degree nodes; on the other side, a node maintenane proedure reovers the network in theevent of an attak. To oneal high-degree nodes, reurrent ping messages or malformedpings (for example, with TTL greater than 1) are silently dropped by the system. Further-more, the Gbackward list is never dislosed in the list sent in response to a ping message,thus preventing nodes from gaining knowledge of the popularity of the node. The nodemaintenane proedure is used to probe for peers that may have left the system, and reatenew random or preferred onnetions.2.4.9 NewsastNewsast [159℄ employs a simple epidemi protool that results in the emergene of asmall-world network. The topology is determined by the list of addresses maintained byeah peer, whih is periodially exhanged with other peers. Beside a small diameterand a high lustering oe�ient, Newsast overlays exhibit resilient behavior in failuresituations, even when a large portion of the peers simultaneously disonnet.Cahe merge Eah node maintains a ahe ontaining the identi�ers and addressesof n other peers in the overlay. Eah ahe entry is assoiated with a timestamp thatdetermines the age of the entry. Information ontained in the ahe is shared with otherpeers by means of an epidemi protool [158℄. Periodially, a node selets a random entry in



40 Chapter 2. Peer-to-Peer Systemsits ahe, ontats the orresponding peer and initiates a ahe merging operation. Cahemerging onsists in opying the ontents of the two peers' ahe and retaining at most the
n− 1 newest entries aording to their timestamp. These entries onstitute the new ahefor both peers parteipating in the merge. To omplete the merge, peers add an entryorresponding to eah other in the ahe with updated timestamps. The merge operationenables nodes to reate new ontats, �ushes old entries, while retaining a resilient andonneted overlay.A Caheid timestampS 45P 53Q 39R 44S Caheid timestampX 37K 77C 15D 33Figure 2.18: Before merge

Merged Caheid timestampK 77P 53S 45R 44Q 39X 37D 33C 15Figure 2.19: Merging

A Caheid timestampK 77P 53R 44S 90S Caheid timestampK 77P 53R 44A 90Figure 2.20: AfterFigure 2.21: Newsast ahe merging operation.Figures 2.18, 2.19, 2.20 illustrate the merging operation initiated by node A at time 90.Node S is seleted as andidate for the merge, the ontents of A and S ahe are uni�ed,and the most reent entries are retained. Node A is inserted in the resulting ahe of S,whereas node S appears in A's ahe.Further researh Epidemi membership management protools have been also used inother systems, suh as Cylon [285℄ and T-Man [157℄. In partiular, T-Man replaesthe random entry seletion employed during ahe merges with a deterministi hoiebased on a ranking funtion; aordingly, a ontrol on resulting graph an be asserted toprodue sorted or lustered topologies. Moreover, a semanti based overlay built on top ofa Cylon overlay is presented [287℄. A general overview of gossip protools for distributedsystems an be found in [173℄.2.4.10 Other approahesAs with strutured overlays, beside the ones reviewed in the previous setions, a numberof other unstrutured designs exists. Among the interesting solutions, [311℄ presents aGnutella-like system that employs topology adaptation to organize peers into semantigroups, whereas [252℄ proposes the onstrution of a Gnutella-like overlay that optimizes�ooding by reduing the number of small yles. In [65℄ the authors introdue a hybridsolution that employs unstrutured searh methods (�ooding and random walks) on top



2.5. Peer-to-Peer hurn 41of a strutured overlay (Pastry): in ontrast to a random overlay, a strutured solutionavoids redundany and enables �ner ontrol of the nodes visited by a query.2.5 Peer-to-Peer hurnPeer-to-peer networks are dynami systems where peers ontinuously join and leave. Eahpeer remains onneted to the system for some amount of time, de�ned as session [271℄.Churn is determined by the dynamis of peer ativity, namely the frequeny of joins andleaves and the length of peer sessions. Understanding hurn and its e�et on the reliabilityof a network is essential for the deployment of robust and preditable large sale systems.Researh on hurn in peer-to-peer networks has foused on analyzing this e�et in real-world strutured networks [29, 130, 248, 271℄, as well as in unstrutured ones [304, 183, 38℄.Several studies have highlighted the di�ulty of preisely measuring the dynamis of alive system. Some of the ahievements onern the development of statistial models todesribe or predit the behavior of distributed systems under hurn. In [248℄, the authorsprovide an analytial study of Chord's performane and validate their result by meansof simulations. Comparative analysis of di�erent DHTs in [160, 236℄ highlight the ost ofmaintaining proper operation under hurn and the negative e�ets of short session times.In partiular, heavy hurn results in either failed lookups requests (Pastry) or inreasedlateny (Chord).The resiliene of a peer-to-peer system relies in its ability to ope with hurn. In[136℄ three aspets of resiliene to hurn are identi�ed: data repliation, routing reov-ery, and stati resiliene. Routing reovery strategies an either be reative or periodi[236℄: whereas reative reovery takes plaes only when a failure has been deteted, peri-odi reovery involves a ontinuous exhange of information between nodes, regardless ofthe deteted hanges in the network. While onsuming less bandwidth under low hurn,reative reovery beomes more expensive as the dynamis of the network inrease, andan reate positive feedbak yles if the network beomes ongested. In partiular, on-gestion may lead a node to think that a neighbor has failed, and the subsequent reoveryan worsen the situation by inreasing the tra�. To solve this problem, the use of aperiodi reovery strategy ombined with a more onservative reative reovery has beensuggested [236℄. Stati resiliene refers to the ability of the network to avoid failure orpartitioning even before reovery ations take plae, for example using redundant links inan unstrutured network.It is often argued that unstrutured solutions are more robust toward the e�ets ofheavy hurn; the results presented in [66℄ reveal that it is nonetheless possible to re-ate resilient strutured solutions. However, the proposed onepts further ompliate themaintenane of strutured solutions; moreover the searh e�ieny of the latter might beounterbalaned by real-world hurn rates [250, 38℄ whih indue high reovery osts.2.6 Peer-to-peer for Grid Resoure DisoveryGrids are distributed systems that support resoure sharing and ollaboration, and operateon well-de�ned infrastrutures, whih provide servies for resoure disovery, resoure man-



42 Chapter 2. Peer-to-Peer Systemsagement, monitoring, and seurity [116℄. Resoure disovery is the proess of determiningwhih grid resoure is the best andidate to omplete a job [257℄. The disovery operationhas to omplete in the shortest amount of time, with an e�ient use of resoures, and atminimum ost [257℄. In this respet, resoure disovery is typially ahieved by means ofentralized or hierarhial information systems, although proposals for fully deentralizedapproahes based on the peer-to-peer paradigm exist [152, 144, 282℄.Grid versus Peer-to-Peer In order to understand how peer-to-peer tehnologies ouldharness the deployment of future grids, a brief review of the ommon traits and di�erenesbetween the two onepts is required. The analysis onduted in [282℄ highlights severalpoints of distintion, in terms of shared resoures, target users, infrastruture, sale, seu-rity, and appliations. Whereas grids are haraterized by a moderate number of trustedentities, peer-to-peer ommunities onsist of a multitude of untrusted systems that are lessonerned with quality of servie poliies and reliable servie provisioning [116℄. Thesedi�erenes also re�et the interests put in the development and operation of suh systems:grids are supported by large investments and ommon e�ort from the involved parties,meanwhile peer-to-peer systems are loosely oupled platforms with little inentives forooperation.Conerning resoures and appliations, peer-to-peer systems have mostly emerged as�le-sharing platforms, whereas grids typially target large sienti� omputing tasks. Inthis regard, systems partiipating into a grid are more powerful, persistent, and betteronneted than those in a peer-to-peer network, and they are managed through striteruser and aess poliies whih ontribute to a more robust and reliable operation. Partlybeause of larger sales, loose dependeny between resoures, and non-ritiality of thedeployed appliations, peer-to-peer systems have better fault-resiliene than grids. Thisdi�erene is aggravated by the fat that traditional grid systems rely on entralized orhierarhial management [178, 86℄, whih determine weak points. Peer-to-peer systemsalso exhibit a higher degree of partiipation dynamism, with shorter session times andfrequent onnetions and disonnetions, while maintaining a relatively stable set of sharedresoures. In ontrast, hosts onneted to grids are relatively stable, but the availabilityof shared resoures greatly varies over time [275℄.Convergene of grid and P2P Convergene of grid and peer-to-peer has been deemedbene�ial for both platforms [282℄. As grid systems sale up and integrate a large number ofommodity hardware, the boundaries that separate them from peer-to-peer networks dis-appear; aording to this vision, future grids will see entralized management replaed byfully distributed solutions, seeking to inrease reliability and to avoid bottleneks. Mean-while, suh next-generation grids, omposed of a large number of nodes, will need to relaxparteipation requirements onerning trust and seurity, and assume the �exible and self-organized behaviors required to minimize management osts. The experiene aquiredwith peer-to-peer systems is ontinuosly being transferred to grids. Aordingly, we havewitnessed the arousal of peer-to-peer solutions for distributed resoure disovery, shedul-ing, and storage. Nonetheless, implementing peer-to-peer information systems neessitatesa hoie between strutured and unstrutured overlays, whih is tied to the goals and re-quirements of the intended deployment senario. Whereas strutured overlays enable very



2.6. Peer-to-peer for Grid Resoure Disovery 43e�ient keyword searh, unstrutured ones allow for omplex queries and typially requireless e�ort to manage the overlay. In the following, we review the requirements set by ourevaluation senario of a grid, and highlight the diretions and design hoies that ouldbene�t the projet.2.6.1 Peer-to-Peer Grid information systemsIn this setion we review some of the existing grid information systems based on peer-to-peer tehnologies. In-depth review and omparison of di�erent models and solutions anbe found in [231, 282, 201, 202℄.Strutured Systems As shown in the previous setion, strutured solutions enablee�ient and deterministi information retrieval. Unfortunately, grid resoure disoveryannot easily bene�t from these systems, as queries annot be mapped to simple hashedkeys. More spei�ally, in ontrast to �le indexing (typial of peer-to-peer �le sharing),querying grid resoures depends on the use of omplex queries omposed of multiple at-tributes whose values are often numerial ranges rather than preise values. As disussedin the preeding setions, several DHTs support range request, and solutions targetinggrids have been developed. As an example, in [141℄, the authors propose to use a P-Gridoverlay to implement a deentralized information system; in a similar way, [60℄ implementsa resoure disovery servie on a CAN overlay. To support multi-attribute requests (Se-tion 2.3.11) the ombination of di�erent independent overlays, eah indexing a di�erentattribute [24, 218, 39℄, has been proposed. Moreover, some examples of DHT with supportfor multidimensional range queries within a single overlay exist [186, 258, 281, 273, 260℄,but ome at the expense of additional omplexity in managing the network.The system presented in [275℄ implements a grid information system that employsdi�erent tehniques to support multi-attribute queries. A Chord-like ring that uses on-sistent hashing provides support for range-queries; several rings are deployed to supportmultiple attributes. Furthermore, �ooding is used to resolve arbitrary queries, and queriesonerning dynami resoures. In ontrast, XenoSearh [266℄ models resoures in amulti-dimensional spae that is distributed aross the nodes. Using a Pastry overlay,queries are direted toward the nodes serving the required partition of the spae. A similarsolution proposed in [33℄ divides the attribute spae among nodes using a tree struture.Unstrutured systems Unstrutured systems do not limit the omplexity of queries,as eah request is resolved loally on eah node. In this regard, unstrutured P2P networksare better suited for integration with existing grid middlewares, beause the latter maystore information using an arbitrary format rather than a �xed shema [71℄. In [200℄, theauthors propose a super-peer system mathing the physial organization of nodes. Eahsuper-peer is responsible for indexing resoures shared within its administrative domain,for ommuniating with super-peers of other domains, as well as for managing resouredisovery requests from ordinary nodes. This researh also highlights the need for strate-gies to improve the e�ieny of resoure disovery. In the same diretion, researh in[151℄ disusses the implementation of an unstrutured peer-to-peer information systemand analyzes di�erent query forwarding strategies.



44 Chapter 2. Peer-to-Peer SystemsCommon issues Both strutured and unstrutured systems have to deal with ommonissues, suh as dereased performane ompared to entralized indexes (longer responsetimes), and seurity onerns [71℄. Regarding the latter, several propositions have beenmade to address the problem, suh as [92, 102℄. These drawbaks are nonetheless balanedby the inreased robustness and fault tolerane of the system.2.7 SummaryThis hapter presented an overview of the urrent state of the art in peer-to-peer systems.The fundamental priniples of strutured and unstrutured solutions have been detailed,and noteworthy examples of both lasses of peer-to-peer infrastrutures have been dis-ussed. Moreover, in relation to the onsidered evaluation senario of a grid, importantaspets and issues related to robustness under hurn and appliation in grid environmentshave been analyzed.Although strutured systems exhibit deterministi searh performane that enablese�ient key based lookups, solutions that support multi-dimensional and multi-attributequeries are more omplex and might still not be enough to support rih queries that aretypial in some senarios suh as grids. Moreover, a omplete analysis of the behavior androbustness of suh systems under high hurn is rather sare. On the ontrary, unstruturedsystems build on simpler designs and enable real full-text queries,The knowledge aquired leads us to a better understanding of the bene�ts and limitsof urrently available solutions, hene providing a solid base for innovation.
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46 Chapter 3. BlåtAnt Algorithm
BlåtAnt indiates a family of novel overlay management algorithms built around aommon set of rules that fous on optimizing logial onnetions between nodes in or-der to redue tra� generated by resoure disovery queries broadasted on the network.Furthermore, the BlåtAnt algorithms provide fault-tolerant and fault resilient behaviorto prevent partitioning of the overlay and ensure reliable operation even in the ase ofunexpeted failures.3.1 Requirements and goalsAn overlay management algorithm for the onsidered grid senario must ful�ll severalrequirements in order to provide a robust ommuniation infrastruture that enables thedevelopment and deployment of high-level servies, suh as resoure disovery and tasksheduling. Aordingly, in the following we review the desired features, and highlight theorresponding researh diretions.Fault tolerant and fault resilient operation The proposed solution should be ableto ope with transient unexpeted ommuniation errors or node faults, without inurringa omplete breakdown of the overlay but graefully degrading its performane. Moreover,deteted failures in the overlay onnetivity must be reovered in order to ensure minimalnegative impat on the operation of the system. In this regard, with fault tolerant opera-tion we intend the ability of overoming ommuniation problems that lead to loss of theinformation being transferred between nodes; onversely, a resilient behavior is required toreat to problems suh as node rashes and ensure that the overlay remains onneted.Support for arbitrarily omplex queries The overlay must be as generi as possible,in order to support di�erent deployment senarios other than the grid one hosen forevaluation. Hene, the overlay should not make any assumption neither on the type ofresoures shared by nodes, nor on the querying mehanism or the omplexity of the queries.Avoidane of weak spots In the review presented in the previous hapter, hubs wereidenti�ed as weak point in power-law topologies. In this regard, the onsidered approahshould avoid reating sale free topologies, and aim at almost uniform node degree distri-bution.Support for e�ient ommuniation Searh in a peer-to-peer overlay may inur largetra� overheads. For this reason, the topology should be optimized to avoid redundantonnetions and unneessary links between nodes. Additionally, to avoid long responsetimes, the maximum distane between any pair of nodes in the overlay must be small.Self-organized and adaptive behavior In order to redue management omplexity,the overlay must be able to autonomously adapt to hanges in the onditions of the network,suh as the addition of new nodes and the removal of existing ones, in order to ontinuously



3.2. Basi algorithm 47meet the aforementioned requirements. It is nonetheless desirable that stable networkonditions, without any node joining or leaving the overlay, result in a stable overlay,hene a trade-o� between adaptiveness and stability must be found.Simple, fully distributed design The overlay management algorithm must not de-pend on entralized ontrol. Nodes should ooperate in a fully distributed asynhronousway, without global information. Furthermore, the omplexity of the algorithm must below, to avoid unwanted proessing overhead on the nodes.As highlighted in the review of peer-to-peer systems in Chapter 2, strutured solutionsgenerally link the overlay struture to data, and typially do not allow for e�ient resolu-tion of arbitrarily omplex queries. Aordingly, in our work and for our requirements anunstrutured solution is preferable. Meanwhile, we strive to optimize the overlay so as toensure e�ient ommuniation; under these premises, BlåtAnt goals are twofold: on oneside, it aims at onstruting and maintaining an overlay with bounded diameter, in orderto limit the maximum delay to reah any node. On the other side, the algorithm also min-imizes the number of redundant onnetions, by breaking up yles that are shorter thana user-de�ned threshold. To meet the aforementioned requirements for fault tolerant, self-organized and adaptive operation, we propose to use bio-inspired tehniques; in partiular,some parts of the algorithms have taken inspiration from the behavior of ant olonies, aparadigm whih has led to the suessful deployment of solutions for other network relatedproblems [62℄.3.2 Basi algorithmThe optimization proess implemented by BlåtAnt bounds the diameter and the girthof the overlay by reating and removing logial links between nodes. More spei�ally, weaim at transforming an existing overlay, represented by an undireted graph G, so thatfor a, b ∈ N
∗, the diameter dG in the resulting graph satis�es dG ≤ b, and the girth gG is

a ≤ gG. The upper bound on the diameter ensures that nodes are reahable within a knownnumber of hops in the overlay, thus the query forwarding an be limited without leavinga large part of the network unvisited. Conversely, the lower bound on the girth preventssmall yles, and redues the probability that a query will be forwarded to the same nodemultiple times through di�erent paths. The underlying proess exeuted by the algorithmthus onsists in rewiring the network by reating and removing logial onnetions betweennodes. In order to ensure a stable and onvergent behavior, the rewiring algorithm mustterminate when a graph ful�lling the aforementioned onditions is obtained.The optimization problem faed by BlåtAnt is similar to the degree-girth problem[106℄, whih is onerned with �nding topologies with the smallest possible number ofverties given degree and girth. This issue is related to the degree-diameter problem[207, 22℄, whih aims at determining the largest graphs of given maximum degree andgiven diameter. Although our researh fouses on resembling goals, a disussion of themathematial impliations of our approah in the �eld of graph theory and ombinatorisis out of the the sope of this thesis.



48 Chapter 3. BlåtAnt Algorithm3.2.1 Rewiring algorithmThe rewiring algorithm is omposed of two steps: one for governing the reation of newlinks, and one for triggering the removal of existing links. In order to set an upper boundto the diameter of the resulting network, new links may be reated. As we want to boundthe diameter to dG ≤ b, we perform the:Step 1 Connet two nodes x and y, when their distane is greater than
b, i.e. dG(x, y) ≥ b+ 1.When onneting x, y a yle of length b+2 is reated in the graph, where the distanebetween all pair of nodes in the yle is ≥ b

2 . Conversely, to enfore a lower bound on thegirth, no yle of length < a must exist. This is aomplished by:Step 2 Any yle of length < a is broken.To ensure a stable and onvergent behavior, the algorithm must nonetheless avoiddestroying yles it reates, hene the lower bound for the girth is a = b + 2 (i.e. thealgorithm an reate yles that have a length greater or equal to the desired girth).Algorithm The rewiring algorithm is de�ned by repeating the aforemen-tioned steps 1, 2, until the distane between any pair of nodesis ≤ b and no yle has a length < a.The following theorem relates the onditions on the diameter and on the girth:Theorem 3.2.1. Let G be an undireted graph where the rewiring algorithm has beenapplied until termination for a given a, b N
∗, a = b + 2; dG and gG be the diameter,respetively the girth of G. Then b+2

2 ≤ dG ≤ b, and gG ≥ b+ 2.Proof. The lower bound for the girth, as resulting from the algorithm, is a = b+ 2 ≥ gG,thus gG
2 ≥

b+2
2 . If the graph ontains no yles, then its girth is in�nite; otherwise dG ≥ gG

2 :if the graph is a yle, then the results follow; otherwise, the maximum distane betweennodes in the smallest yles (the size of whih orresponds to the girth) determines thelower bound for the diameter. First onsider the ase of a graph with at least one yle;in this ase we have:
b+ 2

2
≤
gG
2
≤ dG ≤ b (3.1)If the graph has no yles, gG =∞, thus a < gG ∀a. Furthermore, its diameter is dG ≤ b,otherwise onnetions would have been reated by the algorithm resulting in at least oneyle.To simplify the optimization rules that will be presented in the following setion, wereplae b+2

2 = D, D ∈ N
∗, in equation 3.1 to obtain:

dG ≤ 2D − 2 (3.2)for the diameter, respetively for the girth:
2D ≤ gG (3.3)The value of D is onsidered as the optimization parameter of our algorithm.



3.3. Topology optimization rules 493.3 Topology optimization rulesWe now express the results of equation 3.1 as Connetion and Disonnetion rules. Byapplying these rules a �nite number of times on a onneted graph G, the resulting diameter
d is is bounded aording to dG ≤ 2D − 2.Connetion Rule Let ni and nj be two non-onneted nodes in a onnetedgraph G, and dG(ni, nj) the minimal routing distane from ni to nj in G. A newlink between ni and nj is reated if the following ondition holds:

d′G(ni, nj) ≥ 2D − 1 (3.4)where d′G(x, y) is de�ned as min(dG(x, y), dG(y, x)). The logial onnetion isreated by adding ni to Nj , respetively nj to Ni.The Connetion Rule bounds the maximum distane between eah pair of nodes, henethe diameter of the network, to a value less than 2D − 1. Conversely, the DisonnetionRule is applied in order to remove links that represent redundant paths in the graph thusbreaking small yles and bounding the girth to a value gG ≥ 2D.Disonnetion Rule Let ni and nj be two onneted nodes in an overlay net-work G, i 6= j. Let G′ ← G \ {ni} and Ni the set of neighbors of ni. Node ni isdisonneted from nj ∈ Ni if:
∃ nk ∈ Ni, k 6= j, |Nj | > |Nk| : d∗G′(nj , nk) ≤ 2D − 3 (3.5)where d∗G(x, y) is de�ned as max(dG(x, y), dG(y, x)). The disonnetion onsistsof removing ni from Nj , respetively nj from Ni.Safeness of the Disonnetion Rule The presented rules ensure that the diameter aswell as the girth in the resulting network are bounded aording to the previously desribedlimits. Nonetheless, the optimization proess may onverge only when global and preiseinformation about the overlay is available. In a fully distributed implementation, whereeah node must rely on partial and potentially out-of-date information about the overlay,guaranteeing proper operation is more di�ult. Whereas degraded information about pathdistanes in the overlay just inreases the average path length and results in a less optimizedoverlay, onurrent appliation of the Disonnetion Rule may lead to a partitioning of thenetwork and thus disruption of higher-level ommuniation. In a situation where ompleteknowledge of the overlay is available eah yle an only be broken one, thus the overlayannot be partitioned. In a fully distributed senario loal information on eah node maybe outdated, e.g. refer to yles that have already been broken. Hene, to ensure thatthe algorithm works as expeted a restrition on the Disonnetion Rule is introdued:for eah onsidered yle, only the node with the greatest identi�er (aording to someordering known to all nodes) is allowed to perform a disonnetion. That node is referredas to the master of a given yle. Letting only the master node perform disonnetionsprevents partitioning, but nonetheless requires the master to keep trak of broken yles, asolution whih has the potential drawbak of requiring a large amount of storage on eah



50 Chapter 3. BlåtAnt Algorithmmaster node, espeially in very dynami networks. The solution that is adopted in ourwork is to only allow the master of a yle to remove links with its own neighbors, thusmaking it possible to verify whether the yle has already been broken by relying only onalready available loal and up-to-date information.3.4 BlåtAnt-RThe BlåtAnt-R algorithm is a fully distributed implementation of the topology optimiza-tion rules that employs bio-inspired swarm intelligene tehniques to ollet and spreadinformation aross peers. The algorithm presented in this thesis is derived from the oneintrodued in [51℄; more spei�ally, the underlying logi of the onnetion and dison-netion rules has been adapted to follow the mathematial onstrution presented at thebeginning of this hapter. BlåtAnt-R is the seond fully distributed implementation ofthe algorithm: the �rst distributed implementation of BlåtAnt [49, 50℄ didn't supportfault tolerane, and was thus not suitable for deployment in a real network. In this respet,BlåtAnt-R represents the �rst fully fault tolerant version of the algorithm. In ontrastto a entralized approah, the deentralized implementation has to balane between preiseand up-to-date information and inreased network tra�. Moreover, beause of the fully-distributed design, ations exeuted by one node may invalidate the information olletedby others.3.4.1 Swarm intelligeneSwarm intelligene is a �eld of arti�ial intelligene that mimis the behavior of swarmsof insets in order to solve omputationally intensive optimization problems [48℄ or toimplement olletive intelligent behaviors [36℄. Conerning optimization tasks, a numberof di�erent tehniques have been proposed, with the two most known being Partile SwarmOptimization (PSO) [76℄ and Ant Colony Optimization (ACO) [98℄. While PSO is moresuited for solving numerial problems, ACO naturally targets graph and network relatedtasks. Aordingly, in the following we fous our attention on the latter, and brie�y disusshow distributed systems an bene�t from ant-inspired solutions.Ant olony optimization The ant olony optimization [98℄ (also known as ACO) meta-heuristi is an optimization tehnique that repliates the behavior of ants searhing for food.An example of the foraging proess is depited in Figure 3.1. Eah ant starts from its nest,and randomly wanders in the environment, until a food soure is found. Subsequently, theinset returns to the nest, and lays a small amount of hemial pheromone to trae thepath from the nest to the food. Other individuals in the olony will sense the hemialtrail and hoose to follow it to reah the food: on their way bak to the nest, they willatively reinfore the trail by depositing more pheromone. In this view, pheromone trailsrepresent a form of indiret ommuniation between ants, alled stigmergy, to signal wherethe food is loated. Ants are not fored to follow an existing trail: when an ant wandersin the environment it an hoose to either exploit an existing path, or randomly explorethe environment. If a trail is not reinfored, it will disappear due to the evaporation of thehemial. By default, in absene of pheromone trails, ant exploration will take plae.
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Figure 3.1: The ant foraging proessShortest paths that lead to the food soure naturally emerge from this proess: be-ause a short path takes less time to be traveled, the rate at whih pheromone trails arereinfored is faster, thus the onentration levels remains higher than in other paths. Be-ause the onentration of pheromone on the path also inreases the attrativeness of ittoward wandering ants, a positive feedbak yle will be reated. Conversely, if a pathbeomes inaessible, evaporation will render it less desirable. Aordingly, ACO exploitsan emergent and adaptive behavior.This proess an be modeled by ant-like software agents and be used to �nd shortestpaths in graphs. More spei�ally, in omputer siene, ACO has been used to solve NP-omplete graph problems, suh as the Traveling Salesman Problem [97℄. Consequently, anumber of other NP-omplete problems have been solved using ACO by transforming theminto an instane of TSP.Appliation in Computer Networks Ant algorithms are of simple logi and inher-ently distributed, beause neither entral ontrol, nor diret ommuniation between agentsare required. The foraging behavior of ants has been exploited for implementing adaptiverouting algorithms, as shown in [170℄, or semanti resoure disovery protools [204℄. Fol-lowing the same priniples, the lustering behavior of the Messor Santa speies of ants ledto the development of fully distributed load balaning [210℄ or lustering [113℄ solutions.



52 Chapter 3. BlåtAnt AlgorithmIn the same line of thought, we aim at exploiting some of the priniples of ant olony op-timization in order to simplify the implementation of a distributed version of our overlayoptimization algorithm. In this respet, we deem that the fat that the ACO metaheuris-ti does not require diret interation between agents an ease the development of fullydistributed algorithms.3.4.2 Distributed overlay optimizationThe overlay optimization proess modi�es the logial onnetions between nodes depend-ing on the obtained partial, transient information about the network. To ollet suh data,di�erent types of mobile agents (referred to as ants) are employed. In the spirit of swarmintelligene algorithms, the outome of the optimization proess must not depend on indi-vidual agents but on the operation of a olony as a whole, that is the ollaborative ationsof multiple ants exeuting on the overlay. In the following we detail the distributed imple-mentation of the optimization algorithm, whih omprises the data strutures maintainedby eah node, the semanti of eah ant speies, and the behavior exeuted by eah nodeaording to the pereived status of the network.3.4.3 Loal data struturesEah peer ni maintains a set Ni of addresses of other peers representing its neighborhood.The maximum number of neighbors is m, although the algorithm itself an only reate
mo onnetions, mo ≤ m, during normal operations: the remaining free onnetions arereserved for reovery proedures. To avoid the reation of large hubs, the size of theneighbor set is typially limited to small values < 10.With the exeption of the onnetion phase, a node ni an only ommuniate withpeers in its neighborhood Ni. Furthermore, it is possible to make a distintion betweenative and inative neighbors. A neighbor of ni is onsidered inative until it has exhangedsome information with ni. We denote the fat that nj ∈ Ni is an ative neighbor of niwith ni ← nj ; inversely, an inative neighbor is denoted as ni 6← nj . Beause a node anonly ommuniate with its neighbors, ni ← nj implies ni ∈ Nj .Along with the neighbor set, eah peer also keeps a �xed size ahe table (α), ontaininginformation about other peers of the network. Eah entry in the table has the form
〈nj, Nj , dj , tj , ti〉, where nj is the identi�er of the remote peer, Nj its neighbor set, dj theestimated distane from nj to ni, tj the time on nj when that information was retrieved,and ti the loal time of the last entry update. The remote time tj is used to determineif inoming information is older than the urrent one, whereas ti is used to lean up oldentries when the table �lls up. The information found in the α table is highly volatile,and is ontinuously updated by ants traveling on the network. To support fault resiliene,as long as nj ∈ Ni the entry orresponding to nj in αi annot be removed: this ensuresthat the last known neighbors of nj are always available and annot be overwritten. Anexample of an α table is given in Figure 3.4.3.



3.4. BlåtAnt-R 53Figure 3.2: Sample BlåtAnt-R α tableIdenti�er Neighbors Last Update Timestamp DistaneA P,Q,K,L 87 101 4U E,F,B,W 89 85 53.4.4 Pheromone trailsAs previously disussed, ommuniation between real ants ours using a stigmergi (i.e.indiret) mehanism whih involves leaving hemial pheromone trails in the environment.These hemial traes an be sensed by other individuals in the olony and their onen-tration indiates the desirability of a given path. With time, unless new hemial is leftby an inset, the onentration of the trail ompletely evaporates. Evaporation has theadded bene�t of seamlessly suppressing errors and overoming bad system deisions. Inour system, we emulate this phenomenon, and in that respet pheromone onentrationsare represented as numerial values τ ∈ [0, 1] stored on eah node and assoiated withpaths to neighbors in the overlay. Ants exeuting on a node an both read the atualonentration of a trail, and reinfore it by inreasing its value up to a maximum of 1.Eah node periodially simulates evaporation by lowering the value of a trail τ aordingto an update funtion τ ← τ ∗ ψ, and ψ < 1. If the onentration on a trail falls below athreshold ε, the trail is removed. We distinguish between inoming β trails, and outgoing
γ trails. When an ant travels from node ni to a neighbor nj , the orresponding trail
γi[nj] on ni is reinfored. Conversely, when the ant arrives on nj , pheromone trail βj [ni]is reinfored.3.4.5 Ant speiesIn the onsidered framework, ant speies desribe information ontainers that an be ex-hanged between nodes and that trigger partiular response behaviors, suh as reatingor removing overlay links. Ants an nonetheless be viewed as living entities that arryinformation, move aross the overlay, and perform spei� tasks proper to their speies.More spei�ally, BlåtAnt-R de�nes six di�erent speies of ant agents:
− Disovery Ants are used to ollet and spread information about the status of thenetwork (nodes and links). Ants wander aross the network and store data abouteah visited node nk represented as a triple 〈nk, timestampnk

, Nk〉 ontaining thenode's identi�er, the remote timestamp at nk when the information was olleted,and its atual neighbors Nk. This triple is appended to a bounded-size vetor Vof maximal length lv. Visited nodes also reeive the vetor urrently arried by theant, and use this information to update the loal view of the network (stored in the
α table). Depending on the position of eah entry in the vetor, a node an thusinfer an estimation of the distane of the node in the overlay. An entry in the vetororresponding to a node nj ontains the following information:� nj : identi�er of the visited node;� Nj : set of neighbors of nj ;
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Figure 3.3: BlåtAnt-R Disovery Ant wandering� timestampj : timestamp on nj when the information was olleted.Disovery Ants wander on the overlay following existing links between nodes. Ateah step, an ant may hoose to either proeed on a random path (exploration)to one of nodes in the loal neighborhood set with probability κ, or selet a pathdepending on its atual pheromone onentration (exploitation) with probability 1−

κ. More spei�ally, paths with lower γ pheromone onentration are preferablyhosen, ensuring a fair overage of the network. Visited nodes in V are avoided.Disovery Ants are responsible for ontinuously monitoring the state of the network,and have a limited lifespan π (maximum number of wandering steps). As DisoveryAnts may get lost due to node rashes, at regular intervals ι a new individual isgenerated on every node with probability µ, ensuring the survival of the population.As the optimization task depends on the information gathered by Disovery Ants,running the algorithm with an empty population will prevent any improvement ofthe topology.An example of the behavior of a Disovery Ant is shown in Figure 3.3. The ant is re-ated and exeutes initially on node R, then moves to E and �nally to S. Aordingly,the information passed to eah of the nodes is as follows:� R reeives ();� E reeives (〈R, timestampR, {X,C,E}〉);� S reeives (〈R, timestampR, {X,C,E}〉, 〈E, timestampE , {A,B,R, S}〉).The ant �nally ollets information on node S and ontinues its wandering.
− Constrution-Link Ants are sent by nodes wanting to join the network, but also dur-ing reovery proedures. A node an either aept the onnetion, or forward it to



3.4. BlåtAnt-R 55one of its neighbors (randomly hosen amongst the ones with the smallest degree).Forwarding is required if the node has already reahed the maximum number ofallowed neighbors. To avoid long onnetion delays, eah ant an only travel a max-imum number of steps clantttl: when the limit is reahed the onnetion proeduremust be ompleted by the �rst visited node with a free slot. When node ni aeptsa Constrution-Link Ant sent by nj , it adds nj to Ni and then sends the ant bakto nj , where ni is added to Nj .
− Optimization-Link Ants are instantiated by peers in order to optimize the diameterof the network. When a node ni wants to reate a onnetion with nj it sends anant to it. At nj the ant heks the estimated distane to ni (in the αj table). Ifthe estimated distane is > 2D− 1, or no information is found in αj , the onnetionproedure an ontinue. In this ase, ni is added to Nj , and the ant migrates bakto ni, where nj is �nally added to Ni.
− Unlink Ants remove the links as result of the appliation of the disonnetion rule orwhen nodes leave the overlay. When a node ni wants to disonnet nj ∈ Ni, it �rstremoves nj from Ni, and then sends an Unlink Ant to nj in order to remove ni from
Nj .

− Update Neighbors Ants notify a node when one of its neighbors has hanged its neigh-bors set. This ensures that eah node is able to reover from abrupt disonnetionof a neighbor by onneting with its last known neighbors. Update Neighbors Antsarry the list of the neighbors Ni from the soure node ni, and update the entryorresponding to ni in the αj table of eah target neighbor nj ∈ Ni.
− Ping Ants are used to keep onnetions between nodes alive by reinforing pheromonetrails on visited nodes. Abrupt node disonnetion an be deteted by monitoringthe onentration of β trails: when values approah a lower threshold a reovery pro-edure is started. If appliation tra� is low, the trail between two nodes may notbe frequently reinfored, and thus ompletely evaporate even though the orrespond-ing nodes are still onneted to the overlay. To prevent this from happening, PingAnts are periodially deployed as soon as trail onentration falls below a ertainthreshold.3.4.6 Fault resilieneDisonneting from the overlay an our either properly or improperly. Proper disonne-tions require the leaving node to inform all of its neighbors and initiate a reovery proedureto ensure onnetivity is preserved. This proedure involves sending out Constrution-LinkAnts to all neighbors and onneting them using a ring topology (Figure 3.4). Improper orabrupt disonnetions our when a node stops ommuniating with its neighbors, eitherbeause of a rash or beause of network issues. In this situation, eah neighbor starts thereovery proedure on its own as soon as the failure is deteted (by means of monitoringthe onentration of β pheromone).



56 Chapter 3. BlåtAnt AlgorithmProper disonnetion: Leaving proedure When a peer wants to quit the network,it must ensure that all of its neighbors remain onneted. When node ni leaves the network,it �rst sends an Unlink Ant to all of its neighbors. Next, it sends a Constrution-Link Antto all its neighbors in order to reate a ring onneting all of them. Figures 3.4a) and 3.4b)depit an example topology before, respetively after the departure of node ni.
Figure 3.4: Leaving proedureImproper disonnetion (rash): Reovery proedure The reovery proedure isused to prevent network partitioning in the event of a node rash. When a node njdetets the departure of one of its neighbors ni by sensing the omplete evaporation ofits β pheromone trail, it may start a reovery proedure. The exat behavior of the nodedepends on whether nj 6← ni or nj ← ni.

− if nj 6← ni no information was ever reeived from this onnetion. This situation aneither happen when a node leaves just after being onneted, or when a onnetionproedure is interrupted. In suh ases, ni is just removed from Nj .
− if nj ← ni some data was already suessfully exhanged through this onnetion.It is thus neessary to ensure that onnetivity of the network is preserved by ex-euting the reovery proedure. This proedure involves removing ni from Nj andsubsequently send Constrution-Link Ants to all last known neighbors of ni in orderto onstrut a ring topology as in Figure 3.4. In ontrast to a proper disonnetion,the reovery proedure is started by all neighbors of ni, as soon as the failure has beendeteted: although this an inrease network overhead (proportionally to the size ofthe neighborhood set), eah neighbor must initiate the reovery proess beause itannot assume that other did or would do it.3.4.7 Optimization rules evaluationDuring its lifetime, eah node ni reeives information from Disovery Ants, and orrespond-ingly updates its loal αi table. Eah triple in the ant vetor V updates the orrespondingentry in the αi table; if no suh entry exists, a new one is reated. When the table reahesits maximum apaity, as well as after a ertain amount of time, the least reently updatedentries are replaed. To solve on�its when reeiving onurrent information about thesame node, the remote timestamp in the table and in V are used. At regular intervals ωthe ontents of the table and the neighbor set are used to onstrut a partial graph of thenetwork and evaluate the Disonnetion Rule and the Connetion Rule. All disonneted



3.5. BlåtAnt-S 57omponents that annot be reahed from ni, as well as omponents onneted by meansof non-bidiretional paths are removed from the graph.Evaluating disonnetions For disonnetions, node ni omputes the shortest pathsnot traversing ni between eah pair of neighbors nj, nk ∈ Ni. The shortest path is thenseleted, and if its length is less than 2D− 2, ni initiates a disonnetion (by means of anUnlink Ant) from either nj or nk: in partiular, the neighbor with the highest degree isdisonneted, in order to promote a more balaned link distribution.Evaluating onnetions To evaluate new onnetions, node ni determines the distaneto all nodes nz 6∈ Ni, and initiates a onnetion proedure with the farthest node (bysending an Optimization-Link Ant) if its distane is ≥ 2D − 1. Nodes that are beingonneted are marked, so that subsequent rule evaluation will ignore them. Furthermore,all omputed distanes are used to update the orresponding distane �eld in the α table.Example Figure 3.5 illustrates an example of the rules evaluation proedure: the on-tents of the α table for node A, the neighbor set NA, as well as the orresponding partialgraph are shown. Node K is removed from the partial graph beause there is no edgefrom B to K; onversely, nodes J,L, V are removed beause they belong to a disonnetedomponent. To evaluate the disonnetion rule the distane between C,E,Z along pathsthat do not traverse A is omputed. Aordingly, a path of length 5 hops onnets nodes
E and Z, and depending on the value of D either one of the nodes along this path ouldbe disonneted. Conversely, for evaluating the onnetion rule, the distane to nodes thatare not within the neighbor set is omputed. The obtained value is used to update theestimated distane �eld in the α table (for the entry orresponding to the onsidered node),and eventually triggers a onnetion proedure.

NA = {C,E,Z}

αA (timestamps omitted)identi�er neighbors distaneZ A,F,P,Q 1E A,R,S,B 1B E,N 2F Z,T 2T F,N 3K B 3N B,T,Y 3V L,J 3Figure 3.5: BlåtAnt-R Rules Evaluation3.5 BlåtAnt-SBlåtAnt-S is the third implementation of the algorithm that fouses on simpliity byreduing both the omputational omplexity and the amount of information exhanged
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Figure 3.6: BlåtAnt-S Disovery-S Ant wanderingbetween nodes. It is noteworthy to say that the solution proposed by this version is notmeant to replae the −R one, but it is to be onsidered as an alternative implementationbased on the same optimization rules. In this setion the di�erenes between BlåtAnt-Sand BlåtAnt-R will be highlighted.3.5.1 Ant speiesThe only di�erene of the −S version ompared to the −R one is in the amount of infor-mation olleted and arried by Disovery Ants. In partiular, the latter arry a bounded-length vetor V that ontains only the identi�er of the nodes visited by the ant. In ontrastto the −R version, no other information about the neighbors is olleted, thus the tra�generated by Disovery Ants is onsiderably lower. In the following, Disovery Ants usedby the -S version of the algorithm will be referred to as Disovery-S Ants. The exam-ple depited in Figure 3.6 shows an ant traveling from R to S, passing through E. Theinformation passed to eah of the nodes is as follows:
− R reeives ();
− E reeives (〈R〉);
− S reeives (〈R〉, 〈E〉).The ant then adds the identi�er of node S at the end of its vetor, and ontinues itswandering around the network.3.5.2 Optimization rules evaluationThe evaluation proess is performed eah time a Disovery Ant-S visits a node and uploadsits information vetor. Distane estimations are omputed on the base of the relativedistane between identi�ers in the vetor, rather than through the onstrution of a graph.This estimation is used both for evaluating the optimization rules, as well as to update theorresponding �eld in the α table. The omplexity of evaluating the optimization rules thus



3.6. Evaluation 59redues from O(n2) in BlåtAnt-R to O(n) in BlåtAnt-S. On the downside, distaneestimations are less preise and more errors are inevitable.Evaluating disonnetions Nodes �rst identify all pairs of neighbor's identi�ers withinthe information vetor V , and then ompute the absolute value of the di�erene betweenthe positions of the identi�ers of eah pair in the vetor. If the identi�er of the nodeappears between the pair of neighbors, their distane is set to ∞. The disonnetion ruleis then applied on the pair of neighbors with the smallest in-between distane in the vetor.Evaluating onnetions A node ni evaluates the distane to any other node nk 6∈ Niby alulating the absolute value of the di�erene between the position of the target'snode identi�er and either the losest neighbor nj ∈ Ni identi�er, or the tail of the vetor,whihever value is smaller. This evaluation is stored in the α table. Periodi evaluation ofthe onnetion rule ours at intervals ω, and might subsequently trigger the reation of anew link. To prevent blatant errors, the list of neighbors of neighbors stored in the table isused to adjust distanes if neessary: more spei�ally, if a node appears to be onnetedto a neighbor, its distane is automatially set equal to 2.Example Figure 3.7 illustrates an example of the rules evaluation proedure triggeredby the reeption of an information vetor on node F . We suppose that the neighbors ofnode F are A and M , and the vetor arried by the inoming Disovery Ant-S ontains
{U,M,O, S,E,W,A}, where A is the last node visited by the ant prior to F . To evaluatedisonnetions, the distane between neighbors A and M in the vetor is onsidered: inthe example, their distane is 5. Conversely, for onnetions, the distanes between nodes
W,E,S,O and either A,M or the end of the vetor are omputed. Aordingly, thedistanes are of 2 and 3 hops, for nodes W,O,U , respetively E,S.

NF = {A,M} Disovery Ant VetorU M O S E W AFigure 3.7: BlåtAnt-S Rules Evaluation on node F3.6 EvaluationBy means of extensive experimentation of BlåtAnt-R and BlåtAnt-S, we aim at eval-uating their behavior along di�erent axes. More spei�ally, both the properties of theresulting networks as well as the robustness of the algorithm need to be assessed. Aord-ingly, in this setion we present the onsidered measurements and the orresponding testsenarios, a summary of whih is provided in Table 3.1.Important measurements for evaluating the optimization proess are the diameter, theaverage path length, the number of (direted) edges in the overlay, the degree distribution,and the number of yles as well as their length. While the diameter and average pathlength assess the apaity of the algorithm to bound the maximum distane between anypair of peers, values onerning yles quantify the girth of the graph and the amount



60 Chapter 3. BlåtAnt Algorithmof redundant paths on the overlay. In addition, we deem the degree distribution and thenumber of edges useful for determining the presene of hubs, respetively the omplexityof the resulting network.BlåtAnt-R and BlåtAnt-S are ompared to highlight their bene�ts and drawbaks;in partiular, we aim at understanding if the inreased omplexity of the -R version providesadvantages over the simpler distane estimation logi implemented by the -S version.Senario Fous of the evaluationA Convergene in a stable overlayB AdaptivenessC SalabilityD Overlay fault resilieneE Communiation fault toleraneF SensitivityG Comparison with Newsast and GnutellaTable 3.1: Summary of overlay evaluation senarios3.6.1 Simulation setupAll evaluation senarios are exeuted on a ustom disrete-time simulator with a resolutionof 50 ms that enables aurate measurements of the aforementioned variables. Communi-ation delays between peers are determined by an underlying topology of 3037 nodes and
4788 links reated with i-net 3.0 [295℄. The average path length is of 3 hops, and theaverage lateny on eah link is 78 ms. The topology is depited in Figure 3.8.

Figure 3.8: Underlying topologyUnless otherwise spei�ed, in all senarios an overlay of 1281 nodes is onstruted; 10nodes out of 1281 onstitute the well-known onnetion points of the overlay, whih arelinked together with random onnetions. At the beginning of the simulation, the remaining
1271 nodes initiate a onnetion proedure by sending a Constrution-Link Ant to one ofthe well-known peers (hosen uniformly at random). Unless otherwise spei�ed, in dynami



3.6. Evaluation 61senarios the number of nodes varies during exeution, as nodes joining and leaving theoverlay are simulated in the interval between 6 hours and 9 hours into simulations, with arate of one node added and one removed every 4 seonds. In this regard, two disonnetionstrategies have been onsidered, proper and improper, with the probability of an improperdisonnetion being 50%. The referene parameter values used during all simulations,unless otherwise stated, are detailed in Table 3.2. Aording to the rewiring algorithmperformed by BlåtAnt, the hoie of the optimization parameter D = 5 aims at obtaininga diameter ≤ 2D − 2 = 8 and a girth ≥ 2D = 10.A sensitivity analysis of some of these values is detailed in the following. To obtainstatistially representative data, 5 simulation runs for eah senario are performed. Eahrun simulates an exeution of 12 hours, whih inludes the time required to initially setupthe overlay. A baseline for omparison for all onsidered values is represented in a referenesenario, that is used in our sensitivity analysis in senarios of set F.Value Desription
D 5 Optimization parameter
⌈|α|⌉ 28 Maximum number of entries in the α table of eahnode
⌈αage⌉ 300 Maximum age for valid entries in the α table (in se-onds); entries older than this value are removed fromthe table
m 8 Maximum node degree (number of neighbors)
mo 6 Maximum number of allowed onnetions reated byOptimization-Link Ants
ι 100 Disovery Ants respawn interval (in seonds)
π 25 Maximum number of hops that Disovery Ants antravel in the network
µ 5% Disovery Ants respawn probability
lv 15 Disovery Ants information vetor maximum length
ε 0.02 Minimum pheromone onentration (for both β and γ)
ψγ 0.02

1

300 γ pheromone deay (applied every 100ms, orrespondsto a omplete evaporation in 30 seonds)
ψβ 0.02

1

600 β pheromone deay (applied every 100ms, orrespondsto a omplete evaporation in 60 seonds)
κ 50% Disovery Ants exploration probability
ω 1 Rules evaluation period (in seonds)
clantttl 10 Maximum number of hops for Constrution-Link AntsTable 3.2: Summary of overlay evaluation parametersTo provide a simple baseline for omparison with di�erent overlay management al-gorithms, simulations in senario G experiment with topologies onstruted using theNewsast [158℄ epidemi algorithm and a Gnutella algorithm. Conerning News-ast experiments, eah node maintains a ahe table of 20 entries, whih is merged withother peers every 10 minutes on average, whereas in Gnutella runs eah node maintainsat most 10 neighbors (an exeption is made for well-known nodes), and ping messages are



62 Chapter 3. BlåtAnt Algorithmforwarded every 30 seonds at a distane of 7 hops in the overlay to at most 4 neighbors ateah step. Dynami network harateristis are simulated as in BlåtAnt dynami senar-ios, with nodes joining and leaving the overlay in the interval between 6 hours and 9 hoursin to the simulations, with a rate of one node joining and one leaving every 4 seonds. Thesize of the ahe in Newsast is derived from the experiments detailed in [286℄, and themerge frequeny has been hosen in order to obtain a su�iently stable overlay withoutompromising its fault resilieny.3.6.2 Tra� estimationBesides the qualities of the resulting network, another important measure is the tra�generated by the algorithm. By determining the amount of ant agents employed by thealgorithm, the overall onsumed bandwidth an be determined. Conretely, the ommuni-ation ost for transferring eah speies of ant between two nodes in the overlay has beenestimated as follows:
− Disovery Ant : 388 bits plus 144 bits/visited node in BlåtAnt-S; 388 bytes plus 176bits/visited node plus 144 bytes per eah neighbor of a visited node in BlåtAnt-R;
− Constrution-link Ant : 532 bits;
− Optimization-link Ant : 532 bits;
− Unlink Ant : 532 bits;
− Update Neighbors Ant : 532 bits plus 144 bits/neighbor;
− Ping Ant : 532 bits.These estimations are based on the atual information arried by eah ant, and inludeboth the size of an IPv6 header (320 bit), a UDP header (64 bit), as well as a 4 bitspaket type identi�er and 144 bits soure identi�er (128 bits IPv6 identi�er plus 16 bitsport number). For visited nodes, the assumed 144 and 176 bits omprise 128 bits for theIPv6 address, 16 bits for the port number, and 32 bits (BlåtAnt-R only) for the remotetimestamp. It is noteworthy to say that the provided results refer only to the ase whereno appliation tra� is produed, thus the number of Ping Ants might be higher than inreal situations and thus represents an upper bound rather than a typial value. Low-levelnetwork pings aount for 224 bits.In Newsast simulations, the size of eah exhanged entry in ahe tables is estimatedat 176 bits, omprising of 128 bits for the address, 16 bits for the port number and 32bits for the timestamp. The base ost of a merge operation is assumed to be 532 bitsper transmission (eah merge involves 2 transmissions) plus the ost of transmitting eahentry.In Gnutella simulations the ost of a ping message is 184 bits (the size of the messageheader aording to protool version 0.4 [3℄), whereas a pong message weights 296 bits (ofwhih 184 bits onern the protool header). For simpliity, we assume here that messagesare transmitted using UDP instead of TCP, thus an overhead of 384 bits per paket isonsidered. Aordingly, for onnetions, the overall amount of the data exhanged isassumed to be 280 bits, and two pakets are used.



3.6. Evaluation 633.6.3 Senario detailsIn the following we present the details of eah evaluation senario, and highlight the pa-rameter values that have been onsidered for both a performane and a sensitivity analysis.The orresponding results are presented in Setion 3.7.A - Convergene of the optimization proess To evaluate the fully distributedoptimization proess implemented by BlåtAnt-R and BlåtAnt-S, a set of experimentswith reliable ommuniation was onsidered. One onstruted, the 1281 nodes omposingthe network are not modi�ed, allowing the exeution of the algorithm in a stati situation.Aording to the value of optimization parameter D = 5, suessful optimization of theoverlay should lead to a diameter ≤ 8, and a girth ≥ 10. These experiments also provide auseful insight on the the disadvantages inurred running the optimization proess loallyon eah node without global and reliable information, and highlight the di�erenes betweenthe two versions of the algorithm.B - Adaptiveness In the previous setions, the ability of the algorithm to adapt todi�erent network situations has emerged as an important feature. Aordingly, we exam-ined the behavior of both versions of the algorithm in di�erent dynami senarios, withthe goal of determining the reativity of the system to hanges in the overlay suh as theaddition or removal of nodes. Experiments in set B simulate a dynami network wherenew nodes onnet to the overlay and subsequently disonnet from it. The disonnetionshappen leanly, with nodes quitting the network ensuring proper onnetivity by exeutingthe leaving proedure. In ontrast to other senarios, during simulations, nodes are addedand removed in the period between 30 minutes and 6 hours into simulation, aording toa Poisson proess with an average rate of one onnetion and one disonnetion every 4seonds.C - Salability In the same spirit as in the previous senario, salability experiments insenario C aim at assessing the response of the algorithm in a growing network, where newnodes periodially join-in at a rate of a node added every 2 seonds, from 30 minutes upuntil 6 hours into simulation. Nodes send their onnetion request (using a Constrution-Link Ant) to one of the well-known nodes. The �nal size of the network, after the expansionphase, is of 10620 nodes.D - Overlay fault resiliene The fault resiliene of BlåtAnt overlays is evaluated inexperiments of senario D, with nodes joining the network and nodes leaving it improperlywithout informing neighbors, hene simulating a rash or an unexpeted failure. In thisase, we expet a reovery proedure to be initiated by nearby nodes. As with senariosin B, during the dynami part of the simulation nodes are also added to the system. Morespei�ally, additions and removals are performed between 30 minutes and 6 hours intosimulation, aording to a Poisson proess with an average rate of one onnetion and oneimproper disonnetion every 4 seonds.Furthermore, high-hurn was simulated to determine the robustness of the overlay inthe event of sudden disonnetion of a large portion of the nodes. To evaluate suh high-



64 Chapter 3. BlåtAnt Algorithmhurn situations, random sets of nodes are removed from the overlay at 60 minutes intosimulation, and the size of the largest onneted omponent in the overlay is measured;more preisely, we onsider the onurrent removal of 50, 100, 250, 500, 750 and 1000 nodesseleted uniformly at random out of the initial 1281. All nodes are disonneted withoutperforming a proper leaving proedure, thus onnetivity has to be ensured by reoveryproedures started by surrounding nodes.E - Communiation fault tolerane An important aspet of a fully distributed algo-rithm, is its ability to avoid disastrous onsequenes in the presene of minor ommuni-ation errors. In this regard, in senario E the fault tolerane harateristis of BlåtAntare determined by simulating paket delay and paket loss. Spei�ally, eah ant has a
2% hane of getting lost migration, and 20% hane of being delayed by 2500ms (thuspreventing FIFO ommuniation between nodes). Conerning the dynamis of the net-work, this set of experiments assess the performane of BlåtAnt in omparison to senariosA, B, and D (namely stable network onditions, dynami network onditions with properdisonnetions, and dynami network onditions with inproper disonnetions).F - Sensitivity A number of parameters in�uene the behavior of the algorithm and itsperformane. Hene, it is important to understand how eah value modi�es the outome ofthe optimization proess, the robustness of the overlay against failures, and the onsumedbandwidth. The baseline for this omparison is a dynami network senario as desribedin setion 3.6.1. From this perspetive, senario F experiments with di�erent values foreah important parameter, more spei�ally:
− F0 - Baseline senario: the baseline for omparison is determined by a dynamisenario where the default parameter values, as desribed in the previous setions,are used. In partiular, the optimization parameters D is set to 5, hene the expetedupper bound for the diameter is 2D − 2 = 8, whereas the lower bound for the girthis 2D = 10. The birth probability for Disover Ants is 5%, and eah ant arries avetor of at most 15 entries, for at most 25 hops in the overlay. At eah wanderingstep, Disover Ants have a 50% of probability of following a random path instead ofthe one assoiated with the lowest γ pheromone onentration. Finally, eah nodeis allowed to reate at most 6 onnetions with other nodes by means Optimization-Link Ants, out of a total of 8 onnetions, and the α table on eah node is allowedto ontain a maximum of 28 entries.
− F1 - Optimization parameter D: in this senario we fous on how the optimiza-tion parameter D a�ets the harateristis of the resulting overlay, by experimentingwith di�erent values: 3, 4, 6 and 7 (ompared to D = 5 being the default value usedin the referene senario and throughout the rest of the simulation senarios). Theexpeted upper bounds for the diameter, 2D − 2, are thus 4, 6, 8 and 12; onversely,the lower bounds for the girth, 2D, are 6, 8, 12 and 14.
− F2 - Disovery Ant birth probability µ: the goal is to understand how thenumber of Disover Ants, thus the amount of information exhanged by nodes, a�etsthe onvergene rate and the quality of the overlay. In this regard, the probability
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µ of eah node generating a Disovery Ant at intervals of ι = 300 seonds is variedfrom 5% (the default value used in all other senarios), to 7.5%, 1%, and 0%. Inthe latter ase, the optimization proess is atually disabled, as it depends on theinformation provided by Disovery Ants.

− F3 - Maximum length lv of the information vetor: these experiments aimat understanding the in�uene of the amount of information arried by DisoveryAnts on the optimization proess. Herein, the upper bound for the length of theinformation vetor lv is hosen to be either 12, or 17 (15 being the default value).Eventual bene�ts of additional information are to be assessed in the light of theinreased generated tra�.
− F4 - Maximum number of allowed Disovery Ant hops π: onversely toprevious experiments, we assess here the in�uene of the maximum number of hops
π that Disovery Ants are allowed to travel in the overlay before being disarded.The onsidered values are 15, 25 (the default), 50, and 100.

− F5 - Maximum per-node degree mo: to determine how muh the optimizationproess depends on the onstraint on the maximum per-node degree, in these exper-iments the value of mo is hosen as either 4 or 8, ompared to 6 in the refereneexperiments. The general maximum node degree m is left equal to 8.
− F6 - Exploration versus Exploitation: the tradeo� between exploration andexploitation is assessed by varying the probability κ of a Disovery Ant following arandom path, whih is hanged from the default value of 50% to 0%, 25%, 75%, and

100%.
− F7 - Size of the α table: we assess the in�uene of the amount of informationstored by eah node in its loal α table by varying its size from the default 28 entries,down to 20 and up to 36.G - Comparison with Newsast and Gnutella To understand how BlåtAntompares with existing unstrutured overlay management algorithms, senario G detailsthe behavior of Newsast and Gnutella in the same network onditions as the refereneevaluation in senario F0. More spei�ally, di�erent measurements will be ompared, asfor example the average path length, the amount and type of yles in the graph, and theonsumed bandwidth.3.7 ResultsIn this setion the results obtained by both versions of the algorithm in the aforementionedsenarios are presented and disussed. The qualities of the algorithms are analyzed withrespet to the requirements and goals de�ned at the beginning of this hapter. Conerningthe edge ount, results refer to the number of out-links, determined by the size of theneighborhood set of eah node.



66 Chapter 3. BlåtAnt Algorithm3.7.1 A - Convergene of the optimization proessBlåtAnt-R BlåtAnt-S

(a) Diameter, average path length, edge ount

(b) Graph ylesFigure 3.9: A - Convergene of the optimization proess (diameter and yles)The results shown in Figure 3.9 demonstrate the onvergene of the diameter (a) and thenumber and length of yles (b) in both the BlåtAnt-R and the BlåtAnt-S simulations.With both algorithms, the average path length onverges toward 6, well under the boundof 2D − 2 = 8; with the -S version this onvergene is slower, and the resulting graphexhibits a slightly higher number of edges, namely an average of 7643 links at the end ofthe simulation for BlåtAnt-S versus 7438 for BlåtAnt-R. This result an be attributedto the lower auray of algorithm -S, whih has more di�ulty �nding orret distaneestimations. The inauraies of the -S version are even more evident when the lengths ofyles are ompared: with the -R version, the number of large yles (of length larger than
6) is signi�ant, whereas with the -S version suh yles are almost non-existent. From thispoint of view, neither algorithm is able to ful�ll the optimization goal of a girth ≥ 10; it isnonetheless noteworthy to mention that both versions are able to limit the number of smallyles (of length up to 4), and maintain an average lustering oe�ient lose or equal to 0in all simulation runs. A omparison between the rate of the emergene of large yles andthe rate of onvergene of the average path length also hints at a slight relation between



3.7. Results 67the two: as small yles are broken and only the larger ones are left, Disovery Ants areless likely to wander on redundant paths. A positive feedbak yle is thus reated, andbene�ts more preise distane estimations whih onsequently lead to better deisions inthe optimization proess.BlåtAnt-R BlåtAnt-S

(a) Degree distribution

(b) Network tra�

() Network stabilityFigure 3.10: A - Convergene of the optimization proess (degree, tra�, and stability)



68 Chapter 3. BlåtAnt AlgorithmFigure 3.10 (a) (b) depits the evolution of the degree distribution and the bandwidthonsumed by both algorithms. Conerning the degree, the limit of 6 neighbors per nodeis reahed by a very large fration of the nodes (> 80%) in both algorithms, indiatingthat the upper bound mo is an important parameter for limiting the number of edgesin the resulting overlay. BlåtAnt-S nonetheless shows a slightly worse performane,with an average of 95% of the nodes having a degree of 6 or higher, ompared to 85% ofthe nodes in BlåtAnt-R. The small number of nodes with a degree higher than 6 an beattributed to well-known nodes that are subjet to a higher number of inoming onnetionrequests. Conerning the network ost, as expeted algorithm -S generates less tra� than-R beause of the small amount of information arried by Disovery Ants. More preisely,the former algorithm onsumes 160 kbps on average, whereas the latter onsumes 310 kbps.The �nal measure we take into aount onerns the stability of the algorithm in termsof the average number of links that are hanged every seond in the overlay. Surprisingly,as shown in Figure 3.10 (), the inreased auray in the distane evaluation proess ofBlåtAnt-R does not seem to lead to an inrease in stability: whereas the -S versionmodi�es an average of 0.20 links per seond (after the initialization phase), the -R versionmodi�es 0.79 links/seond. The reason for the unexpeted more stable behavior of the -Sversion is due to the larger number of edges, whih limits the possibility of reating a largenumber of new links when the network beomes saturated.3.7.2 B - AdaptivenessBoth algorithms are able to ontrol dynami situations, with nodes onneting and dis-onneting at 4 seonds intervals, by maintaining a diameter value slightly higher than theupper bound (2D − 2 = 8), as shown in Figure 3.11 (a) (vertial lines are used to markthe start and end of the dynami part of the simulation). However, the behavior related tothe lower bound of the girth in the dynami phase of the simulation is notieably di�erent:with the -S version the number of large yles is signi�antly redued, while with the -Rmany yles of length greater or equal to 6 are present. These results further highlightthe bene�ts of a more aurate distane evaluation in deteting and removing small yles,and therefore redundant paths in the overlay.With regards to the data exhanged by nodes during the simulations, detailed in Figure3.11 (), it is possible to note the ontrasting behavior of the -R and -S versions: while inthe former the onsumed bandwidth dereases during the dynami phase (from an averageof 310 kpbs, as observed in senario A, to 285 kbps), in the latter it inreases substantially(from 160 kbps to 220 kbps). With the -R version, the tra� redution an be attributedto the diminished number of Disovery Ants, as well as Ping Ants, that are lost on nodesdisonneting from the network. This redution is signi�ant, and ompensates for theinrease of the Optimization-Link Ant, Unlink Ant, and Update Neighbors Ant populations.On the ontrary, with the -S version the bene�ts of a redued population of Disovery Antsare less evident, thus the tra� is heavily in�uened by the additional required speies thatare instaned to onnet new nodes and ensure onnetivity aross the overlay.
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(a) Diameter, average path length, edge ount

(b) Graph yles

() Tra�Figure 3.11: B - Adaptiveness (diameter, yles and tra�)3.7.3 C - SalabilityAs shown in Figure 3.12 (a), both the -R and the -S version of the algorithm are able toaommodate the additional nodes that onnet to the overlay during the expansion period



70 Chapter 3. BlåtAnt Algorithm(from 30 minutes until 6 hours into simulation) that made up the �nal overlay omposedof 10620 nodes as well as 64555 and 65673 edges in the -R and -S version respetively. Thediameter and average path length in the -S algorithm are more unstable than in the -Rduring the expanding phase of the simulation; nonetheless, both algorithms maintain theaverage path length loser to the user de�ned target 2D − 2 = 8. Similarly, the numberof yles (Figure 3.12 (b)) of length 4 and 5 is onsiderably higher with the −S version,whih on�rms the evidene found in the previous senarios that the latter exeutes a lessaurate optimization proess.An analysis of the bandwidth onsumed by both algorithms, illustrated in Figure3.12 (), shows an expeted signi�ant growth in the tra� generated by Disovery andDisovery-S ants. More spei�ally, the overall tra� required to maintain the �nal overlayof 10620 nodes is 2670 kbps with BlåtAnt-R, and 1390 kbps with BlåtAnt-S, whihsales proportionally to the size of the network (as eah node has a 5% probability ofgenerating an ant every 100 seonds).3.7.4 D - Overlay fault resilieneOverlay fault resiliene desribes the ability of the algorithm to respond to node failuresthat result in abrupt disonnetions without ompromising the onnetivity of the overlay.Figure 3.13 details the results pertaining to the diameter, edge ount, and average pathlength obtained in our simulation where new nodes onnet to the overlay, and existingnodes unexpetedly stop interating with other nodes and disonnet from the network atintervals of 4 seonds from 30 minutes to 6 hours into the simulation. In all experiments,the overlay remains fully onneted, thanks to the emergeny reovery proedures thatare started by the neighbors of leaving nodes. The reovery ativity is highlighted by theinreased tra� generated by Constrution-Link Ants. Results onerning the yles inthe graph, as well as the generated tra�, re�et those obtained in senario B, with onlya slight inrease in the number of Constrution-Link Ants.The behavior of the algorithm in the event of a failure of a large portion of the nodesis shown in Figure 3.14 (a)(b)(). The results prove the ability of both BlåtAnt-Rand BlåtAnt-S to ope with suh extreme situations without atastrophi onsequenes,suh as a partitioning of the overlay, even when 750 out of 1281 nodes are simultaneouslydisonneted (hene results for onurrent disonnetion of 25, 50, 100, 250, and 500 nodesare omitted). When 1000 nodes are disonneted the network beomes slightly partitioned,with the size of the largest partition being about 280 nodes (out of 281) on average withBlåtAnt-S and 276 with BlåtAnt-R.3.7.5 E - Communiation fault toleraneSurviving the loss of information during ommuniation is another important aspet ofthe robustness of a distributed system. The results of the experiments repliating theonditions de�ned in senarios A,B, and D are depited in Figure 3.15, 3.16, and 3.17respetively. The obtained results show that both the -R and the -S versions of thealgorithm are able to manage loss of information transmitted over the network (namely,ant agents) and ommuniation delays, and maintain the diameter bounded; however,it should be noted that small average path lengths and diameter are mostly due to the
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(a) Diameter, average path length, edge ount

(b) Graph yles

() Tra�Figure 3.12: C - Salability (diameter, yles, and tra�)exessive number of links that are erroneously reated by the algorithm, rather than beingthe result of a ontrolled behavior. During the dynami phase, with proper and improperdisonnetions, the number of edges is heavily in�uened by disonneting nodes, as wenote a sharp inrease when these node dynamis end.
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Figure 3.13: D - Overlay fault resiliene (diameter, average path length, edge ount)

(a) Simultaneous disonnetion of 750 out of 1281 nodes

(b) Simultaneous disonnetion of 1000 out of 1281 nodesFigure 3.14: D - Overlay fault resiliene (average path length, network size, and largestonneted omponent)Although not shown in the �gures, the behavior onerning graph yles is highly vari-able, with the presene of a high number of small yles of length up to 4. During allsimulations, despite the harsh onditions of the network, the overlay remains fully on-
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(a) Diameter, average path length, edge ount

(b) Tra�Figure 3.15: E - Communiation fault tolerane, stable senario (diameter, and tra�)neted; however both the number of links and the tra� signi�antly inrease: onerningthe former, we observe an average of 8900 links (-R version) and 9200 links (-S version)during the dynami phases, and 9900 links (for both algorithms) afterwards. As depitedin the graphs, the tra� inrease is due to the Constrution-Link Ants, whih are the resultof a high number of reovery proedures that are started when a node stops reeiving antsfrom a neighbor beause of lost network pakets. Frequent hanges in the neighborhoodsets an also be observed, as signaled by the number of Update Neighbors Ants, whihaount for the largest portion of the overall tra�.3.7.6 F - SensitivityThe results obtained through our sensitivity analysis enable a deeper understanding ofthe in�uene of eah parameter on the outome of the optimization proess, namely theomplexity of the resulting topology, as well as its network ost. Eah experiment targetsone single parameter and results are ompared with the referene senario that is detailedbelow. Exept for the referene senario, detailed graphs for this setion are available inAppendix A.
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(a) Diameter, average path length, edge ount

(b) Tra�Figure 3.16: E - Communiation fault tolerane, proper disonnetion (diameter, andtra�)F0 - Referene senario In the referene senario the network is stable until 6 hoursinto simulation; subsequently, one node is added and one is removed every 4 seonds. Asshown in �gure 3.18 (a), the -R and the -S versions exhibit a similar behavior by reduingthe average path length to 6 during the initial phases of the simulation; however, whendynamiity is introdued in the overlay, both algorithms manage to maintain an averagepath length between 8 and 10. Beause a large number of existing nodes leave the overlay,the number of edges redues from around 7500 (-R) and 7600 (-S), to about 6000 and
7300, respetively.The information about graph yles depited in Figure 3.18 (b) supports the evidenefound in early results of senario A: the more aurate distane estimation mehanismemployed by BlåtAnt-R ompared to the -S version improves the optimization proessand prevents yles of length 3 and 4 even in the dynami part of the simulation. On theontrary, results in Figure 3.19 (a) show very similar behavior of both algorithms onerningthe degree distribution, with the -R version obtaining a slightly smaller number of nodeswith maximum optimization degree (d(6)); the drop during the dynami phase is due to the
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(a) Diameter, average path length, edge ount

(b) Tra�Figure 3.17: E - Communiation fault tolerane, improper disonnetion (diameter, andtra�)removal of a large number of nodes, and the addition of new nodes that join the networkwith only one neighbor. Finally, in relation to the generated network tra�, it is possibleto note the in�uene of Constrution-Link Ants in the dynami interval, with an averageof 50 kbps generated with both versions of the algorithm.A detailed analysis of the onnetion and disonnetion operations started by bothalgorithms reveals that the -R version initiates signi�antly less onnetions proeduresthan the -S version, with an average of 15560 and 65292 respetively. These results arere�eted in the average bandwidth onsumed by Optimization-Link Ants, whih amountsfor 0.37 kbps for the -R version and 0.87 kbps for the -S one. The improved distaneevaluation implemented in the -R version also results in a higher perentage of initiatedonnetions that are suessfully and orretly ompleted (i.e. onnetions that orrespondto a orret distane estimation and are aepted by both nodes). More spei�ally, the -Rversion attains an average of 46.5%, whereas the -S one only ahieves an average of 6.65%.Nonetheless, both algorithms exhibit a similar error rate onerning ompleted onnetions,with an average of 47.26% (-R) and 48.98% (-S) of the ompleted onnetions resulting
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(a) Diameter, average path length, edge ount

(b) Graph ylesFigure 3.18: F0 - Sensitivity referene senario (diameter and graph yles)from wrong distane estimations.Additional experiments showed that disonnetion proedures help improving the on-vergene of the diameter and average path length. In partiular, the ahieved averagepath length at 5 hours 50 minutes into simulation was measured to be 6 with both algo-rithms when disonnetion proedures were enabled; onversely, without disonnetions,the average result was 6.37 and 7.5 for BlåtAnt-R and BlåtAnt-S respetively. Theseresults highlight the need for both optimization rules (onnetion and disonnetion) forthe proper operation of the algorithm.F1 - Optimization parameter D Experiments with di�erent values for the parameter
D aim at assessing the ahievable ontrol over the optimization proess. As shown in FigureA.1 (a), di�erenes are notieable only with BlåtAnt-R, mostly during the initial phaseof the simulation, where the average path length onverges toward a ommon minimum of
6. In this regard, only the experiment with D = 7 shows a signi�antly di�erent behaviorthroughout the whole simulation. Conerning the graph yles, shown in Figure A.1 (b),



3.7. Results 77BlåtAnt-R BlåtAnt-S

(a) Degree distribution

(b) Network tra�Figure 3.19: F0 - Sensitivity referene senario (degree and tra�)it is possible to note how smaller values for D result, as expeted, in a larger number ofyles of length less than 6. Conversely, the number of edges (Figure A.1 (d)) dereaseswith larger D values, as less links are required to bound the diameter and to maintain thelower bound on the girth. Ultimately, in respet to the network overhead, we note that thegenerated tra� is inversely proportional to the value of D, a fat that an be attributedto the redued number of links whih leads to a diminished number of Ping Ants that aresent by nodes to their neighbors.F2 - Disovery Ant birth probability µ The optimization proess depends on theinformation olleted and spread by Disovery Ants. Intuitively, a larger population ofsuh ants would provide more information to eah node, possibly improving the outomeof the optimization. As shown in Figure A.2 (a), when ants are not deployed in the overlay(i.e. birth probability equal to 0%), the average path length is about 15 hops with bothversions of the algorithm. However, faster onvergene toward 6 hops is ahieved as thepopulation is inreased, and better ontrol during the dynami phase of the simulation is



78 Chapter 3. BlåtAnt Algorithmobtained. A side-e�et of the dynamis of the network also a�ets the simulation with noDisovery Ants, whih sees its average path length derease to a value of 13. With regardto the graph yles (A.2 (b)) the simulation with no Disovery Ants seems to performbetter than the others, by exhibiting a smaller number of yles of length less than 6.This result is easily explained by the fat that typially no yles are reated during theonstrution phase, as eah new node onnets as a leaf of one of the existing nodes, unlessmultiple onnetion requests are started. This fat is also re�eted in the smaller numberof edges present in the overlay, as shown in Figure A.2 (). During the dynami part of thesimulation, we note that larger populations help ahieve a more stable behavior. Clearly,more ants not only provide better results, but also generate more tra� on the network(Figure A.2 (d)), hene a tradeo� is required: onsequently, a birth probability µ = 5%,hosen as default value in our other experiments, seems to provide satisfatory results.F3 - Maximum length lv of the information vetor The maximum length of theinformation vetor arried by Disovery Ants determines how far eah node an see in theoverlay. Apart from a slight di�erene in the onsumed bandwidth, none of the sensitivityanalysis experiments onerning the maximum length lv of the information vetor arriedby Disovery Ants show signi�ant variations. The observed onvergene of average pathlength (Figure A.3 (a)), as well as the type and length of the deteted graph yles (FigureA.3 (b)) are relatively similar, meaning that small variations in the amount of informationavailable to eah node neither bene�ts nor worsens the optimization proess.F4 - Maximum number of allowed Disovery Ant hops π By letting Disovery Anttravel for more hops in the overlay inreases the number of visited nodes and the amountof information available to eah node. As shown in Figure A.4 (a), faster onvergene ofthe average path length an be ahieved with more than 15 hops. Conerning graph yles(Figure A.4 (b)), signi�ant di�erenes are visible only in BlåtAnt-S, with the detetionand removal of small yles improving as ants are given more hops to travel in the overlay.This �nding an be explained by the fat that distane evaluations in the -S version areextrated diretly from the vetor arried by Disovery Ants, hene better informationquikly leads to an improved optimization proess. Unsurprisingly, the amount of tra�generated by the algorithm is proportional to the number of hops eah ant travels in theoverlay, thus a trade-o� is required (Figure A.4 (d)).F5 - Maximum per-node degree mo The maximum number of neighbors for eahnode represents the seond most important optimization onstraint after the parameter D.On one hand, a value that is too small ould hinder the optimization proess and preventsuessful onvergene of the diameter and average path length. On the other hand, avalue that is too large would permit the reation of large hubs in the overlay, and inreasethe overall tra� generated by Ping Ants. The results illustrated in Figure A.5 (a) showthat neither version of the algorithm an ensure the upper bound on the diameter whenonly 4 neighbors are allowed. Meanwhile, in Figure A.5 (b) we note that a value of mo = 8leaves a larger number of yles of length less than 6, indiating a less optimized overlay.Therefore, the default value of 6 represents the best trade-o�.



3.7. Results 79F6 - Exploration versus Exploitation Disovery Ant wandering on the overlay aneither hoose to follow a random path (exploration) or the one with the lowest γ pheromoneonentration (exploitation). As shown in Figure A.6, no notieable variation an bedeteted when the overlay is stable. However, some slight di�erenes an be observed in thedynami phase of the simulation. In partiular, when full exploration (100%) is employedthe overall tra� is higher; onversely, with full exploitation (0%), a less optimized overlaywith a higher number of yles smaller than 6 is obtained. These results motivate ourdefault hoie of κ = 50% as the more appropriate one.F7 - Size of the α table The α table maintained by eah node ontains partial knowl-edge about the overlay whih is used to determine if new onnetions are to be reated andif yles that are to be broken exist. It is interesting to determine how this informationin�uenes the optimization proess ahieved by BlåtAnt. As expeted, the results shownin Figure A.7 show no signi�ant di�erene between simulations with di�erent table sizesin BlåtAnt-S, as only the onnetion proess depends on the information in the table.On the ontrary, with BlåtAnt-R the results onerning graph yles (Figure A.7 (b))show that a larger table enables better detetion and removal of small yles. Although alarger table does not inrease the tra� generated by the algorithm, it augments the timerequired to evaluate the information and extrat distane estimations, in partiular withBlåtAnt-R. Moreover, a larger table is more prone to ontaining outdated informationwhih ould lead to wrong optimization deisions.3.7.7 G - Comparison with Newsast and GnutellaTo better understand the bene�ts of BlåtAnt, we ompare here the results obtainedin the stable senario A, as well as in the dynami baseline senario F0, with two otheroverlay management algorithms, namely Newsast and Gnutella. Comparisons instable onditions provide useful information about the stati harateristis of the resultingoverlays, whereas dynami simulations provide an insight into their behavior in realistionditions.Stable overlay The diameter and average path length are redued by both NewsastandGnutella to a value between 5 and 6, and 4 respetively (Figure 3.20 (a)). In ontrastto BlåtAnt, it is not possible to onstrain these values as they are emerging harateristisof the management algorithm rather than the result of a willful optimization proess. Thesame observations an be made onerning the graph yles (Figure 3.20 (b)): with bothNewsast and Gnutella a large number of small yles of length 3 and 4 exist in thegraph, and the average lustering oe�ient is 0.72 for the former (whih is ompatiblewith the observations made in [158, 159℄), and 0.49 for the latter. Aordingly, in ontrastto BlåtAnt (whih exhibits an average lustering oe�ient of 0), many redundant pathsexist in these overlays.Figure 3.21 (a) shows the stability of the overlay in terms of hanged links per se-ond. Beause Newsast nodes periodially merge their ahes, an average of 35 linkshange every seond even though no nodes are added or removed. On the ontrary, withGnutella as soon as all nodes have �lled their available slots after the initialization phase,
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(a) Diameter, average path length, edge ount

(b) Graph ylesFigure 3.20: G - Comparison with Newsast and Gnutella (stable overlay - diameter andyles)no subsequent hanges are made to neighbors, hene the overlay is perfetly stable. In thisregard, the results ahieved with BlåtAnt in senario A (where less than 1 link is hangedevery seond) are satisfatory. Conerning tra� (Figure 3.21 (b)), it is possible to notethat the onstant merges in Newsast aount for a negligible bandwidth onsumption of
0.9 kbps. On the ontrary, Gnutella requires onstant probing of eah node's neighborsby means of ping messages, thus its overall bandwidth onsumption is onsiderably higherthan both Newsast and BlåtAnt.Dynami overlay Simulations in the dynami overlay (Figure 3.22) show that News-ast exhibits a larger inrease of the average path length than Gnutella during thedynami phase of the simulation. Moreover, the diameter in the former is highly variable,reahing a maximum of 18. Network dynamis signi�antly redue the number of smallyles in Gnutella, a phenomenon that is prevented in Newsast as a result of theonstant ahe merging proess. In both ases, the number of edges at the end of thesimulation is redued beause the size of the network shrinks from 1281 to 1280. We note



3.8. Auray of the results 81Newsast Gnutella

(a) Stability

(b) Network Tra�Figure 3.21: G - Comparison with Newsast and Gnutella (stable overlay - stability andtra�)a sharp inrease in tra� in both algorithms (Figure 3.22 ()), with an inrease of over 6times in Newsast (up to 6 kbps) and more than 15 times in Gnutella. Conerningthe former, the additional network overhead is aused by new nodes sending pings as theyjoin the overlay, while in the latter the inreased tra� is the result of merges performedby new nodes. Compared to BlåtAnt, the bandwidth onsumption of Newsast is stilllower, while that of Gnutella is signi�antly higher. To this extend, Newsast seemsa better ompetitor for our approah.3.8 Auray of the resultsTo determine the auray of our data, the following proess has been used. For eahsenario, the results presented in this hapter refer to averages from 5 simulation runs. Ineah run, measurements (suh as the average path length or the number of edges) havebeen taken every 1000 seonds, for a total of 44 during the simulated 12 hours of operationof the overlay. For eah measurement point, the relative standard deviation aross all runs
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(a) Diameter, average path length, edge ount

(b) Graph yles

() Network Tra�Figure 3.22: G - Comparison with Newsast and Gnutella (dynami senario)is omputed; aordingly we onsider the average, as well as the maximum values of thelatter in order to haraterize the overall auray of the data olleted throughout ourexperiments.In all senarios, the relative standard deviation for eah measurement has been found to



3.9. Algorithm analysis 83be very low, highlighting the stability of the algorithm and the reproduibility of results.The average of the relative standard deviation aross all measurements has also beendetermined to be negligible. The following statistial information an be extrated for themost relevant measurements:
− Average path length: the average of all of the senario's average relative stan-dard deviation aross all periodi measurements is 4.6%, with the highest valuesbeing 12.2% (in the sensitivity analysis with BlåtAnt-R and D = 7), 11.4% (inthe sensitivity analysis with BlåtAnt-R and mo = 8), 10.5% (in the sensitivityanalysis with BlåtAnt-R and π = 15), and 10.4% (in the sensitivity analysis withBlåtAnt-R and µ = 1%). These senarios an be onsidered as extreme ones, aseither the information olleted by nodes was limited (as with D = 7, π = 15, or
µ = 1%), or the onstraints were too loose (mo = 8) to fore a stable onvergingbehavior of the overlay optimization proess.

− Edge ount: the average of all of the senario's average relative standard deviationaross all periodi measurements is 1.66%, with the highest values being 14.2% (inthe sensitivity analysis with BlåtAnt-R and D = 7), and 10.6% (in the sensitivityanalysis with BlåtAnt-R and mo = 8).
− Graph yles: the number and length of deteted graph yles are volatile values,and an average relative standard deviations of 33% aross all measurements has beendetermined. It is noteworthy to say that the largest deviations are found in largeyles (of length greater than 5), hene the ability of both algorithms to detet andbreak small yles is still valid.
− Tra�: the average relative standard deviation is at most 0.1% in all senarios,whih proves that the algorithm has preditable bandwidth onsumption.3.9 Algorithm analysisThe optimization algorithm implemented by BlåtAnt through the Connetion and Dis-onnetion rules desribed in Setion 3.3 relies on graph traversal and single-pair shortest-path resolution algorithms. In this setion, the time omplexity of a entralized implemen-tation of the algorithm and of the onsidered fully distributed versions is evaluated.Centralized algorithm In a entralized implementation of the algorithm, two phasesare required: one involving the disonnetion of nodes to break up yles smaller thanthe prede�ned threshold, and one to onnet nodes in order to bound the diameter ofthe network. Eah phase needs to be repeated as long as either the Disonnetion or theConnetion rule apply. In the �rst phase, all nodes are iteratively proessed, the pathsbetween all neighbors are omputed, and eventually the Disonnetion rule is applied.Conversely, during the onnetion phase, the shortest paths between all pairs of nodes areomputed to determine whether the Connetion rule applies. Beause all operations areexeuted sequentially and neither phase requires the details of eah path (traversed nodes)but only the distane between nodes, a breadth-�rst traversal tehnique an be employed,



84 Chapter 3. BlåtAnt Algorithmleading to a omplexity of O(N + Nm) for eah distane evaluation in a network of Nnodes with at most m neighbors per node. Sine eah node needs to be proessed, theoverall omplexity of eah phase is O(N2).BlåtAnt-R Eah node implementing BlåtAnt-R loally employs an approah sim-ilar to the entralized algorithm, although on onsiderably smaller graphs based on loaland partial information. In partiular, the size of the partial network onstruted from theahe table α is determined by the size table ⌈|α|⌉ and the maximum number of neighborsper node m. Conerning the Connetion rule, the omplexity for evaluating the wholetable using the breadth-�rst algorithm is O(⌈|α|⌉2m2). In ontrast to the entralized solu-tion, to safely apply the Disonnetion rule the list of traversed nodes must be determinedin order to identify the master of eah yle. Aordingly, a breadth-�rst traversal an-not be employed to determine the distane between neighbors of eah node. Supposingthat the Djikstra ([93℄) algorithm is employed instead, the worst-ase time omplexity toevaluate the whole ahe table is O ((

m
2

)

(⌈|α|⌉m log(⌈|α|⌉m) + ⌈|α|⌉m)
). Several e�ienyimprovements an be implemented to further redue the omputational load on eah node;for example, unreahable nodes an removed from the partial graph as soon as they aredeteted, reduing the time spent for subsequent distane evaluations.BlåtAnt-S In ontrast to the -R version, BlåtAnt-S determines distanes solely onthe position of the elements within information vetors olleted by Disovery Ants. A-ordingly, the time omplexity is O(lv) eah time a node proesses an inoming informationvetor.Through an empirial investigation of BlåtAnt-R we have observed a linear growthof the proessing times required by the onnetion phase (evaluation of distanes in orderto reate additional links) in relation to the size of the α table. More spei�ally, wemeasured 0.24 ms with ⌈|α|⌉ = 28, 0.31 ms with ⌈|α|⌉ = 36, and 0.7 ms with ⌈|α|⌉ = 84.Also on BlåtAnt-R a less-than-linear growth was found regarding the maximum numberof neighbors m, with 0.24 ms with m = 8, 0.28 ms with m = 16, and 0.29 ms with m = 24.In this respet, it should be noted that the inrease of the maximum number of neighborshas not resulted in a signi�ant inrease in the atual edges in the network, meaning thatthe majority of the nodes retained as small a number of neighbors as neessary to maintaina bounded diameter. This phenomenon also in�uened the average time spent during thedisonnetion phase (evaluation of distanes between neighbors in order to break smallyles): with respet to both ⌈|α|⌉ and m a less-than-linear growth instead of a quadratione was observed. More spei�ally, the measured times were 0.2 ms with ⌈|α|⌉ = 28, 0.26ms with ⌈|α|⌉ = 36, and 0.5 ms with ⌈|α|⌉ = 84, and 0.2 ms with m = 8, 0.22 ms with

m = 16, and 0.22 ms with m = 24 respetively. Regarding BlåtAnt-S the measuredgrowth related to an inrease of lv was found to be linear, validating our formal analysis.As expeted, the proessing times for both the onnetion and the disonnetion phaseswere also onsiderably shorter than with the -R version, ranging from 0.02 ms with lv = 15up to 0.03 ms with lv = 45 for the onnetion phase, and < 0.01 ms for the disonnetionphase in all experiments up to lv = 45.



3.10. Summary 853.10 SummaryIn this hapter the BlåtAnt algorithm was thoroughly detailed and evaluated. By meansof a fully distributed, bio-inspired algorithm, the topology of the overlay is optimized tobound the diameter as well as the girth. Whereas the �rst goal diminishes searh responsetimes by limiting the maximum number of hops traveled by queries, the seond one miti-gates the problem of redundant message transmission by reduing atively breaking smallyles in the overlay. The fundamental priniples of the algorithm have been disussed, andtwo implementations were presented. An in-depth analysis of the behavior of the algorithmin several network onditions, onduted by means of a simulator, validates the proposedapproah and demonstrates the suitability of BlåtAnt for real-world deployments.
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88 Chapter 4. Resoure Disoverywith our view presented in Chapter 3, that dealt with the problem of onstruting anoptimized unstrutured peer-to-peer overlay using a fully distributed algorithm, the aim ofthis hapter is to investigate e�ient deentralized searh methods to further exploit theproperties of suh system. We thus propose a fully distributed searh mehanism [53, 54℄inspired by existing tehniques, espeially routing indies, repliation and lustering. Inthis regard, our e�ort is to provide eah node with a ahe ontaining addresses of otherpeers in the network that share similar resoures or servies, and forward resoure disov-ery queries toward those nodes whenever possible, in order to inrease the number of hitsat minimal ost. More preisely, the presented solution builds loosely oupled lusters, andis omplementary to other tehniques aimed at improving searh in unstrutured overlays,suh as repliation, teeming and seletive forwarding.The rest of this hapter ompletes our review of searh in unstrutured peer-to-peersystems presented in Chapter 2 with an additional disussion of similar tehniques thatrelate to our approah. This is followed by an overview of the proposed loal ahingmehanism and by a thorough validation by means of simulations.4.1 Enhaning semanti-aware resoure disoverySemanti-aware resoure disovery exploits the information onerning both the resouresand the queries in order to improve searh e�ieny. Of partiular interest for our re-searh are two semanti based tehniques, namely routing indies [83℄ and lustering [114℄.Furthermore, repliation an be exploited to inrease the likelihood of �nding mathingresoures and redue searh delays [195℄. In this respet, the information might be ei-ther naturally repliated, as it is the ase with popular ontent in �le sharing networks,or proatively repliated as the result of a repliation algorithm. Routing indies employsemanti information to forward queries toward nodes that are more likely to provide therequested servie, while lustering solutions group semantially similar resoures with thegoal of making forwarding more e�ient as well as inreasing the hit (or reall) rate onea hit has been found.Examples that employ semanti information to route queries inlude [301, 73℄, whereit is suggested to use loal indies to forward searh queries toward nodes that are morelikely to satisfy them. The forwarding poliy is normally based on satisfation indiesthat are evaluated based on past experienes, namely suessful query responses. Buildingon the priniples of the routing indies paradigm, di�erent propagation strategies an beimplemented, as suggested in [151℄. A similar solution is employed in [227℄, to implementa grid information servie based on peer-to-peer tehnologies that uses routing indies todiret queries toward the losest known node that might ful�ll the request. Figure 4.1illustrates an example of resoure disovery querying for a resoure on node E: by usingloal information in the routing table, the query is �rst forwarded toward node B, and�nally to node R that provides a math.In ontrast to routing indies, whih are onerned with query routing, lustering meh-anisms fous on organizing and repliating information in order to group them into seman-tially similar groups. From this point of view, an interesting and self-organized solutiongeared toward grids is Antares [114℄: by employing a swarm intelligene algorithm, lus-ters of referenes to nodes sharing similar resoures are reated. Ant inspired mobile agents



4.1. Enhaning semanti-aware resoure disovery 89
Figure 4.1: Resoure disovery with routing indieswander aross the network, and transfer resoure desriptors following a simple algorithm:on a node, if an ant is not arrying any desriptor, it randomly piks the one that is lesssimilar to the others and then ontinues wandering; onversely, if the ant is arrying adesriptor, it will release it with a probability proportional to the similarity between thearried desriptor and the desriptors stored by the node. The outome of this proessis that desriptors that are similar will be likely on the same node or on nearby nodes.Resoure disovery in Antares is started as a blind random walk searh; when a node thatshares resoures similar to what is being queried is found, the searh beomes informedand forwarding is done toward nodes that are the most similar to the target spei�ed inthe query. The bene�ts of lustering are twofold: on one side during resoure disoverysemanti information an be used to route the query toward a mathing node; on the otherside, when a mathing node is found, additional hits an be resolved nearby with limitedbandwidth onsumption by ontating nodes in the neighborhood. Figure 4.2 depits anexample of resoure disovery querying for resoures similar to the ones referened by de-sriptors stored on R: (a) the random walk proess progresses toward node R, and then(b) �ooding the neighborhood allows �nding additional results.

Figure 4.2: Resoure disovery with lusteringA solution inspired by both routing indies and lustering is presented in [267℄: eahnode in a Gnutella-like network maintains a list of shortuts to other nodes that sharesimilar interests. These shortuts are disovered by performing searhes using a �oodingprotool, and are subsequently used to �nd additional shortut andidates. For resouredisovery, peers try to use the available shortuts and fall bak to �ooding only if none of



90 Chapter 4. Resoure Disoverythe shortuts has the requested ontent. In a similar way, the solution presented in thishapter builds on the priniple of reating and maintaining loal ahes on eah node, thatontain addresses of other nodes in the overlay that share similar resoures. These ahesrepresent small lusters that an be exploited during resoure disovery: more spei�ally,when a node mathing the query is found, the forwarding of the query ontinues for someadditional steps toward nodes in the ahe, as the referened nodes are more likely toprovide additional results. Content in the ahe is obtained by means of proative resouredisovery queries as well as by exhanging it with other nodes using an epidemi protool.4.2 Proative ahingWhile the overlay topology maintained by BlåtAnt enables optimized ommuniationby atively bounding the maximum distane between eah pair of nodes, and also byreduing the number of redundant paths between nodes, obtaining satisfatory resouredisovery hit rates by broadasting a query on the network still requires visiting a largenumber of nodes. The aim of the proposed resoure disovery approah is to inreasethe hit rate by exploiting ahed information in order to minimize the average bandwidthonsumed to obtain eah result. Beause transferring data aross the overlay generatesadditional tra�, we target a positive trade-o� between the inreased number of hits andthe additional bandwidth related to resoure disovery.4.2.1 Resoure pro�lesEah node in the overlay shares some information or resoures with other nodes: theharateristis of shared ontent an be referred to as the resoure pro�le of a node. Aresoure pro�le an be represented by a vetor of tuples that desribe the di�erent aspetsof the resoure: for example, a node in a omputing grid is haraterized by the servieso�ered, the CPU arhiteture, the amount of memory, et. The information ontained ina pro�le need not to be stati; in partiular, it is possible to distinguish between stati anddynami aspets: whereas the former are onerned with harateristis that are not likelyto hange aross time (as for example, the CPU arhiteture), the latter fous on valuesthat hange aross time (for example, the available memory, whih depends on the statusof the node, the urrent ative tasks, and the sheduling poliy). Aordingly, a dynamiahing mehanism that an take into onsideration possible hanges in the availability ofresoures is required.4.2.2 Pro�le similarityInformation in the ahe ontains referenes to nodes sharing similar ontents or resoures,and are thus likely to math the same queries. In order to determine if two resoure pro�lesare similar we use a similarity funtion to express the distane between pro�les as a realvalue. We propose here two similarity funtions, namely a osine similarity funtion anda di�erene vetor one.



4.2. Proative ahing 91Cosine similarity Given two nodes ni and nj , their resoure pro�le vetors pi and pj , asuitable salar produt operation, and a norm ‖.‖, we onsider a osine similarity funtion
Λ(pi, pj) ∈ [0, 1], suh that

Λ(pi, pj) =











pi·pj
||pi||||pj||

if pi·pj
||pi||||pj||

> 0

0 otherwiseThe salar produt and the norm have to be de�ned suh that the pro�les are equivalenti� Λ(pi, pj) = 1, and similar i� this value is lose to 1 aording to a user-de�ned threshold.Di�erene vetor similarity The similarity value an be simpli�ed if values in theresoure pro�le map onto a disrete ordered sets. In this ase, the similarity funtion anbe omputed by �rst reating two vetors, one for eah pro�le, that map the pro�le valuesto the ordinals in the disrete domains, and then omputing the maximum of the absolutevalue of the omponents of the vetor. For example, given the following disrete sets:
memory = [512MB, 1GB, 2GB, 4GB, 8GB],

cpu = [1GHz, 2GHz, 3GHz]and two resoure pro�les A = [2GB, 2GHz] and B = [8GB, 3GHz], the resulting vetorsare:
A′ = [3, 2], B′ = [5, 3]The similarity funtion is then omputed as the maximum absolute value of the omponentswithin the di�erene vetor, i.e:

max(|A′ −B′|) = max(|3− 5|, |2 − 3|) = max(2, 1) = 2Depending on the onsidered appliation, two resoure pro�les an be onsidered similarif the value of the funtion is 1, 2, or a bigger value.4.2.3 Similar peers aheEah node keeps a ahe table of size csize storing identi�ers and timestamps of other nodeswith a similar pro�le. The timestamp is used to determine the age of an entry. The aheis updated at regular intervals by starting proative resoure disovery queries to searhfor other nodes in the network having a similar pro�le. Results from proative queries arestored in the table and replae existing entries. Similarly to routing indies, the shortutsontained in the ahe form a seond-level overlay, where eah node's neighborhood isomposed of peers with similar resoure pro�les. Figure 4.3 illustrates an example overlayand the ahe on node A, whih ontains referenes to nodes that share similar resouresaording to the de�ned resoure domain.
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Figure 4.3: Example overlay and detail of the loal ahe on node A4.2.4 Cahe mergingMaintaining up to date ahe information through proative resoure disovery queriesmay lead to high network overhead. We thus introdue a ahe merging mehanism thatenables nodes to share their ahe ontents with peers having similar pro�les. This avoids�ooding the network with proative queries, in favor of a pairwise exhange of a smallnumber of node identi�ers.The proess itself is inspired by the Newsast [159℄ epidemi algorithm. At regularintervals, eah node randomly hooses a peer from within its ahe ontents and initiatesa merging proedure. The initiating peer requests the ontent of the remote ahe, mergesthem with the loal ahe, and retains at most the csize − 1 entries with the highesttimestamp (i.e. the most reent information). Both the initiating node and the remotenode will then replae their own ahes with the resulting set. Finally, the initiatingnode will add the remote peer identi�er, along with an updated timestamp to its ahe.Conversely, the remote peer will add the initiating node's identi�er and updated timestampto its ahe. It should be noted that suh simple merging mehanism ould be replaed bya more advaned merging sheme in future work.4.2.5 Enhaned resoure disoveryResoure disovery is performed using a limited and probabilisti �ooding algorithm. Lim-ited �ooding implies that nodes keep trak of reeived queries, and avoid forwarding queriesthat have already been proessed. Probabilisti �ooding means that, at eah step, the queryis forwarded only to a subset of all neighbors. In our approah, the subset is onstrutedby uniformly sampling the neighborhood set. We onsider the query as suessful when atleast one node mathing the query is found; onversely, eah resoure found ounts as a hit.Aordingly, the hit rate (reall rate) measures the perentage of suessfully disoveredresoures out of all mathing ones.The peer ahe itself is exploited by non-proative searhes to enhane the hit rate:when a mathing resoure is found, instead of stopping the searh the query jumps to thenode ahe and ontinues for an additional number of steps. In this way, there is a highprobability of reahing additional hits beause of the way the ahe has been onstruted.Figure 4.4 depits an example of resoure disovery exploiting the loal ahe. Whenthe query reahes node A, a math is found, hene the forwarding ontinues using the



4.3. Evaluation 93shortuts available in the ahe, leading to an additional hit on node E.

Figure 4.4: Resoure disovery exploiting loal ahes4.3 EvaluationWe onduted a detailed experimentation of the proative ahing, and ompared its per-formane against basi resoure disovery. For evaluation purposes, and in line with thethesis evaluation senario, a grid network has been onsidered. In this setion the detailsof the simulation tests are presented and disussed.4.3.1 Simulation setupSimulation of resoure disovery is performed by randomly hoosing both a starting nodeand a searh pro�le. A set of 5 simulation runs of 12 hours were evaluated: 5 searh queriesare regularly started every 60 seonds, beginning at 30 minutes into simulation and endingat 12 hours, resulting in a total of 3450 queries per run. The results detailed in the nextsetion thus represent an average over the latter number of requests.4.3.2 Peer-to-Peer OverlayThe underyling overlay is onstruted and maintained by BlåtAnt-S, whih was hosenfor its lower network overhead ompared to BlåtAnt-R. Similarly to BlåtAnt ants,resoure disovery queries also ontribute in reinforing β and γ pheromone trails as theypropagate aross the network. As with the referene senario F0 disussed in Chapter 3,the network is bootstrapped starting from an initial random lattie onsisting of 10 well-known nodes. In the �rst phase of the evaluation, additional 1271 nodes onnet to theoverlay, up to a total of 1281 nodes. Overlay parameters, as well as the simulated rates andintervals of onnetions and disonnetions are as in the referene senario. Aordingly,the expeted average path length in the overlay is 8, although the TTL of resoure disoveryqueries has been set to 5 in order to highlight the bene�ts of the ahe mehanism whileretaining a reasonable tra� overhead. To evaluate resoure disovery in dynami networkonditions, the overlay is modi�ed at runtime by having new nodes joining the overlayevery 4 seonds in the period between 6 and 9 hours into simulations. Upon disonnetion,nodes either leave the overlay properly or abruptly.



94 Chapter 4. Resoure DisoveryIn order to assess the impat of di�erent overlay management algorithms on the perfor-mane of the proposed ahing mehanism, we also experiment with topologies onstrutedand maintained by Newsast and Gnutella. Conerning the former, eah node man-ages a Newsast ahe table of 20 entries, whih is merged with other peers every 10minutes on average. Conversely, in Gnutella experiments eah node maintains at most
10 neighbors (exepted for well-known nodes), and ping messages are forwarded every 30seonds at a distane of 7 hops in the overlay to at most 4 neighbors at eah step.4.3.3 Evaluation senariosAs our evaluation aim at assessing the performane and robustness of the proposed resouredisovery mehanism, di�erent evaluation senarios experimenting with di�erent parametervalues have been onsidered. In partiular we performed an analysis of the hit rate (alsoknown as reall rate), whih represents the perentage of disovered resoures mathingthe query out of all mathing ones available in the network, of the generated tra�, as wellas of the sensitivity of the algorithm toward parameter variations. Aordingly, a numberof evaluation senarios (a listing of whih is available in Table 4.2) have been simulated.The parameters that have been onsidered in our analysis, as well as the default valuesemployed in our experiments (unless otherwise stated), are detailed in Table 4.1.Value Desription

TTL 5 Resoure disovery query time-to-live (hops in theoverlay)
FW 4 Probabilisti forwarding sample size (number of neigh-bors)
M − Int 15 Cahe merge interval (in minutes)
P − Int 45 Proative queries interval (in minutes)
C − TTL 3 TTL while traveling within the ahe (in hops)
C − FW 3 FW while traveling within the ahe (number of aheentries)
P − TTL 4 Proative queries TTL (in hops)
P − FW 3 Proative queries FW (number of neighbors)
− None Repliation strategy (None, one-hop, 5-hops)Table 4.1: Summary of resoure disovery evaluation parametersBy means of our evaluation we aim at assessing the in�uene of these parameters onboth the hit rate and the onsumed bandwidth.Senario Fous of the evaluationA Bene�ts of proative ahingB Bene�ts of proative ahing with repliationC SensitivityD Comparison on Newsast and Gnutella overlaysTable 4.2: Summary of the resoure disovery evaluation senarios



4.3. Evaluation 954.3.4 Resoure pro�lesUpon reation, eah node is assigned a random stati resoure pro�le that does not hangeduring evaluation. Pro�les are omprised of several �elds that desribe both hardware andsoftware properties of the mahine. In partiular, we onsider the implemented arhiteture(e.g. amd64, power, et.), available memory, available disk spae, and operating system(e.g. Linux, Solaris, et.). Values for eah �eld are hosen with di�erent probabilitydistributions, as follows:
− Arhitetures are hosen aording to the list published on the TOP500 Superom-puting Sites (www.top500.org) at the time of the writing of this thesis. The probabil-ity distribution is as follows: amd64 87.2%, power 11%, ia-64 1.2%, spar 0.2%,mips 0.2%, ne 0.2%;
− Available Memory and Disk Spae are both independently and uniformly hosenas either 1, 2, 4, 8, or 16 Gigabytes;
− Operating Systems installed on eah node are based on the aforementioned TOP500list, with the following distribution: Linux 88.6%, Solaris 5.8%, Unix 4.4%, Win-dows 1%, BSD 0.2%.The simulator generates resoure disovery queries with random pro�les aording tothe aforementioned distribution, that will be mathed by nodes on the overlay. To omputepro�le similarity, the arhiteture and operating systems are onsidered as disriminant as-pets, thus two pro�les with di�erent values are always onsidered as non similar (similarityvalue equal to 0). On the other side, a similarity value an be omputed for pro�les withmathing operating system and arhiteture, using the early mentioned di�erene vetorsimilarity funtion. More preisely, given two resoure pro�les a, b, and the orrespondingvalues for memory and disk spae amem, bmem, respetively adisk, bdisk we onsider a similarto b if bmem

2 ≤ amem ≤ 2 · bmem and bdisk
2 ≤ adisk ≤ 2 · bdisk. It is important to note thisvalue for similarity is not ommutative.4.3.5 Tra� EvaluationTo evaluate the amount of bandwidth onsumed by resoure disovery, the following tra�estimations have been onsidered:

− resoure disovery queries / repliations: 5 KBytes;
− resoure disovery query replies: 128 bytes;
− repliation: 5 KBytes per hop;
− ahe merge: 1064 bits plus 176 bits/ahe entry;
− ping: 704 bits (2 ∗ (320 + 32) bits ICMPv6).These estimations are based on the atual information arried by eah ant, and inludeboth the size of an IPv6 header (320 bit), a UDP header (64 bit), as well as a 4 bits



96 Chapter 4. Resoure Disoverypaket type identi�er and 144 bits soure identi�er (128 bits IPv6 identi�er plus 16 bitsport number). The obtained tra� results are based on an average ost over the totalnumber of 3450 queries, and inlude the overlay management, the proative ahing task(if appliable), repliation (if enabled), and resoure disovery. The bandwidth onsumedby the overlay management algorithm and by proative ahing does not depend on theresoure disovery ativity, and it should thus be onsidered as a �xed ost shared amongall queries.4.3.6 Senario detailsThe rest of this setion disusses the algorithm parameters used in eah senario aordingto the fous of the evaluation. A detailed overview of the default parameter values used ineah senario is shown in Table 4.1, unless otherwise spei�ed; the orresponding resultsare presented in Setion 4.4.A - Bene�ts of proative ahing Senarios A evaluate the bene�ts of the proposedproative ahing sheme. In order to setup a baseline for omparison, several simulationswithout ahing that employ a simple probabilisti �ooding protool and di�erent queryforwarding strategies have been performed. More spei�ally, we experimented both with�xed query TTLs equal to 5 and varying number of ontated neighbors (3, 4, 5, 8), as wellas with TTL varying between 5 and 9 and �xed number of neighbors equal to 4. Thesame experiments have been repeated with proative ahing enabled. Proative resouredisovery queries are started every 45 minutes (P-Int), while ahe merging happens oneah node with an average period of 15 minutes (M-Int). Eah proative query is forwardedup to a distane of 4 hops in the overlay (P-TTL): at eah forwarding step, 3 neighborsare ontated (P-FW ). The ahe on eah node stores at most 5 entries (C-size). One ahit is found, resoure disovery queries may travel at most 3 hops in the overlay (C-TTL),ontating 3 peers at eah step (C-FW ). From this set of experiments, the one employinga forwarding strategy of 5 hops and 4 neighbors is onsidered as baseline for all othersenarios, beause, as it will be made lear by the results, it provides one of the lowest ostper hit.B - Bene�ts of proative ahing with repliation To assess the in�uene of repli-ated ontents on the bene�ts brought by proative ahing, senario B experiments withtwo di�erent repliation strategies: one-hop repliation and repliation at a distane of 5hops. While the �rst strategy represents a typial hoie in peer-to-peer systems, the se-ond one is tailored for the BlåtAnt overlay onstruted with D = 5, beause the size ofyles in the graph should enable traveling for 5 hops away from a node without followingredundant paths. The onsidered query forwarding and proative ahing parameters areas in senario A.C - Sensitivity Whereas previous senarios aim at assessing the improvements derivedby our proative ahing approah, sensitivity analysis senarios fous on determining howalgorithm parameters values a�et the performane of the system.
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• C1 - Sensitivity to hops traveled in the ahe (C-TTL, C-FW): to evaluatethe impat of ahe navigation strategies we ondut several experiments with dif-ferent C-TTL and C-FW. The value of C-TTL is hanged from the default 3 hops,to 2 and 5 hops, whereas the C-FW is hanged from the default 3 neighbors, to 1, 2,and 5.
• C2 - Sensitivity to the ahe merge interval (M-Int): ahe merges enableinformation sharing between nodes, and help leaning old entries from ahes, thuspreventing referenes to missing nodes that have already left the network. We assessthe performane of the algorithm pertaining to the frequeny of merges by varyingthe merge interval from the default of 15 minutes to 7m 30s, 30m and 60m.
• C3 - Sensitivity to the proative query interval (P-Int): proative queries arethe primary mehanism used to update the ahe. We gauge the bene�ts of moreor less frequent proative querying by experimenting with di�erent intervals, namely

15m, 30m, 45m (the default value used throughout the rest of the experiments), and
1h 30m.

• C4 - Sensitivity to the proative query spread (P-TTL, P-FW): this se-nario experiments with di�erent forwarding strategies onerning proative queries.Spei�ally, we hange the value of P-TTL from the default of 4 hops to 3 and 5,and the value of P-FW from 3 neighbors to 2 and 4.
• C5 - Sensitivity to network stability: all previous experiments are ondutedon a network with dynami harateristis, where the overlay is modi�ed at runtimeby having new nodes joining the overlay every 4 seonds in the period between 6hours and 9 hours into simulations. In this set of simulations we aim at assessingthe in�uene of suh network dynamis on the performane of resoure disovery. Inpartiular, the results obtained in senario A are disseted to obtain average resultsbefore the dynami phase (i.e. before 6 hours in to simulation), during the dynamiphase (i.e. between 6 and 9 hours into simulation), and after the dynami phase (i.e.after 9 hours into simulation).D - Comparison with Newsast and Gnutella overlays Similarly to senarioA, the improvements in the hit rate introdued by proative ahing are evaluated intwo di�erent overlays, namely Newsast and Gnutella, to assess the in�uene of theseleted overlay on the behavior of our solution.4.4 ResultsBased on the previously disussed evaluation senarios and having detailed the onsideredparameters, we present and analyze here the orresponding results, whih aim at assessingthe e�ieny of the proposed resoure disovery approah and the sensitivity of the ahingalgorithm to variation of parameters. In the presented graphs, experiments marked witha ∗ indiate that the baseline experiment's parameters have been used.



98 Chapter 4. Resoure Disovery4.4.1 A - Bene�ts of proative ahingAs shown in Figure 4.5 (a) our proative ahing strategy signi�antly improves the hit rate,whih is doubled in the 5/3 (i.e. TTL=5, FW=3) and 5/4 query forwarding strategies,and aounts for about 40% of the hits in other experiments. Cahe merges generate anegligible part of the tra� (6 KBytes per query), whereas the impat of proative querieson the network ost is about 10% (Figure 4.5 (b)), and totals about 1MByte per query. Thetra� generated by resoure disovery queries forwarded on the overlay slightly inreaseswhen ahing is enabled, beause of the additional forwarding steps that are performedwithin the ahe. The bene�ts of proative ahing are noteworthy in the 5/4 experiment,where the hit rate ahieved with ahing mathes that of the 5/5 experiment withoutahing, but with an overall query ost redued by 650 KBytes per query.

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.5: A - Bene�ts of proative ahing4.4.2 B - Bene�ts of proative ahing with repliationAs shown in Figure 4.6 (a), repliation improves the query hit rate by inreasing the oddsof �nding results in the overlay. In this regard, one-hop repliation provides the best hitrate, both with and without ahing. Even with repliation, proative ahing improvessubstantially the performane of resoure disovery: in partiular, the hit rate inreasesfrom 13%, without neither repliation nor ahing, to 45% when both are employed. Asillustrated in Figure 4.6 (b), the ost of proative ahing is omparable to that of replia-tion, and the improved performane aounted to ahing remains at the same levels arossthe di�erent repliation strategies. This result enables us to laim that the set of resultsobtained from the ahe overlay and that of results from replias in the overlay are disjoint,thus the bene�ts of ahing are independent from the repliation strategy employed.4.4.3 C1 - Sensitivity to hops traveled in the ahe (C-TTL, C-FW)Figure 4.7 (a) shows the impat of di�erent ahe navigation strategies (i.e. di�erent C-TTL and C-FW) on the hit rate and the bandwidth required for eah result (ost per hit).From the analysis of the results it is lear that the more nodes are visited through the ahe,the higher the hit rate beomes. Nonetheless, by fousing on the ost per hit, it emerges
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(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.6: B - Bene�ts of proative ahing with repliationthat the best strategy involves forwarding the query for just one hop in the overlay, to allnodes referened in the ahe (1/5 ). This result highlights the fat that similar peers havea higher probability to remain lose to a node in the ahe overlay, thus the advantages ofletting the query be forwarded farther in the ahe do not sale proportionally with thedistane traveled.

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.7: C1 - Sensitivity to hops traveled in the ahe (C-TTL, C-FW)4.4.4 C2 - Sensitivity to the ahe merge interval (M-Int)Cahe merges allow for inreasing the amount of information stored in the ahes with alower bandwidth onsumption than proative queries. With ahe merges peers share thedisovered resoures and remove old entries from the ahe, whih ould point to missingnodes. Nonetheless, as shown in Figure 4.8, hanging the merge frequeny does not resultin signi�ant improvement or degradation of the resoure disovery performane, althougha slight bene�t is observed when the merge interval is below or equal to 15 minutes. As themerging proess onsumes a negligible amount of bandwidth, more frequent ahe mergeshave no negative impat on the network overhead and should be favored.
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(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.8: C2 - Sensitivity to the ahe merge frequeny (M-Int)4.4.5 C3 - Sensitivity to the proative query interval (P-Int)As shown in Figure 4.9 (a), more frequent proative querying inreases the hit rate, sig-naling that better information is stored in the ahe. However, a ounter-e�et of shorterintervals is an inreased ost a�eting eah query. The di�erene between the strategiesonerning the hit rate is nonetheless minimal, varying from 23% when queries are startedevery 1h 30m to 25% when the interval is redued to 15m. Pertaining to the network over-head, from Figure 4.9 (b) it is evident that more frequent proative queries substantiallyinrease the overall tra�.

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.9: C3 - Sensitivity to the proative query frequeny (P-Int)4.4.6 C4 - Sensitivity to the proative query spread (P-TTL, P-FW)By letting proative queries travel deeper in the network, more hits an be found, henebetter ahe ontents are olleted. Results depited in Figure 4.10 show nonetheless thatthe small bene�ts of inreased proative query P-TTL and P-FW do not ompensate forthe additional bandwidth onsumption.
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(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.10: C4 - Sensitivity to the proative query spread (P-TTL,P-FW)4.4.7 C5 - Sensitivity to network stabilityThe stability of the network, in terms of frequeny of onnetions and disonnetions ofnodes, in�uenes signi�antly the outome of resoure disovery operations. In partiular,in an unstable network queries may get disarded if the node that urrently proesses themdisonnets from the network. Additionally, ahe ontents may refer to nodes that havealready left the overlay, whih hinders the bene�ts of ahe forwardings. In previous se-narios the network onditions were modi�ed during the simulation, with new nodes joiningthe overlay every 4 seonds in the period between 6 hours and 9 hours into simulations. Inthis senario we onsider the three phases of previous experiments separately, namely byanalyzing the stable one before 6 hours into the simulation, the unstable one from 6 hoursto 9 hours, and the phase after the unstable onditions from 9 hours until the end of theexperiment (12 hours). As expeted, Figure 4.11 shows that the best hit rate (27%) an beahieved in a stable network; on the ontrary, during the dynami phase of the simulation,unstable network onditions lower the hit rate to 17%, as well as inreasing the ost perhit to about 90 KBytes. After the ompletion of unstable onditions, the performane ofresoure disovery in terms of hit rate and ost per hit quikly return to satisfatory levels.

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.11: C5 - Sensitivity to network stability



102 Chapter 4. Resoure Disovery4.4.8 D - Comparison with Newsast and Gnutella overlaysThis last set of experiments aims at judging whether the bene�ts of the proposed proa-tive ahing sheme an be maintained on other peer-to-peer overlays. The Newsastand Gnutella senarios repliate the same resoure disovery settings as the baselineexperiment, although with varying forwarding strategies are employed.

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.12: D - Comparison with Newsast (without ahing)Newsast During the simulations, the observed average path length in overlays main-tained using Newsast was between 5 and 6 during stable network onditions and around
8 in unstable onditions. Although these values are lower than the ones registered forBlåtAnt-S, the hit rate ahieved with (Figure 4.13) or without (Figure 4.12) ahing islower than the latter. The reason for these results is the fat that Newsast topologiesontain a larger number of links and redundant paths: if a query is forwarded throughsuh paths, nodes that have already been visited are enountered, thus worsening the per-formane of resoure disovery. A similar issue an be observed with proative ahingqueries, whose tra� is higher with Newsast than with BlåtAnt-S. However, it isinteresting to note that the ontribution of the ahe mehanism to the hit rate aountsfor a similar perentage with both overlays, namely around 7% in the 5/3 experiment and
15% in the remaining experiments.Gnutella As shown in Figure 4.15, the bandwidth required to maintain theGnutellaoverlay is onsiderably higher than with BlåtAnt-S. This negatively in�uenes the overallost of the resoure disovery proess. Moreover, the hit rate in the Gnutella overlay islower than with BlåtAnt-S in all but the 5/8 senario, both with or without ahing.However, as observed with Newsast, the ontribution of the ahe mehanism to the hitrate aounts for a similar perentage with both overlays.4.5 Auray of the resultsThe presented data refer to an average over 5 simulation runs. For the hit rate and the ostper query, an average over a total of 17150 queries over all runs in eah senario was on-
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(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.13: D - Comparison with Newsast (with ahing)

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.14: D - Comparison with Gnutella (without ahing)

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.15: D - Comparison with Gnutella (with ahing)sidered. The observed relative standard deviations are minimal and do not invalidate our�ndings. More spei�ally, the average relative standard deviation for the hit rate arossall senarios was 2.52%, and for the hit rate ontributed by the ahe 1.63%. Conerning



104 Chapter 4. Resoure Disoverynetwork tra�, the obtained relative standard deviations for the query ost and the hitost are 1.44% and 2.16% respetively.4.6 SummaryIn this hapter we presented a tehnique to improve resoure disovery in unstrutured over-lays using loal shortut ahes. Cahes are maintained by periodially exeuting proativeresoure disovery in order to retrieve identi�ers of other nodes with similar resoure pro-�les, that are thus likely to ful�ll the same queries. To further improve the performaneof our system, while limiting the network bandwidth onsumption, we inorporated in ourapproah epidemi exhange of information between ahes. Resoure disovery queriesare broadasted on the network using a probabilisti �ooding protool; when a mathingnode is reahed, searh ontinues through ahe shortuts, providing additional resultswith limited ost. We evaluated our approah through extensive experimentation and as-sessed its merits ompared to traditional �ooding methods. We have been able to realizeimprovements in the hit rate with little impat on the generated tra�. Furthermore, ananalysis of the bene�ts of our sheme on di�erent peer-to-peer overlays proved its inde-pendeny and validated its appliability on diverse peer-to-peer overlays with onsistentlysubstantial improvements of the hit rate.
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106 Chapter 5. Meta-ShedulingGrids an be used to solve omputationally intensive problems that would not be e�ientlysolved by a single resoure, possibly beause of time or spae limitations. In this respet,a grid ideally provides a �exible infrastruture that sales e�iently as the number ofpartiipating resoures inreases [81℄. In ontrast to peer-to-peer networks, grids onsistof more powerful resoures and better onneted infrastrutures, and rely on persistentmanagement servies [116℄. A widely aepted notion of the grid onsiders it as a pool offederated resoures within distributed virtual organizations that manage aessing poliiesand provide transparent on-demand omputing [120, 119℄. Grids have been suessfully de-ployed in several sienti� senarios [72℄, and have attrated a noteworthy researh streamaimed at improving the underlying infrastrutures in terms of aessibility [194℄, e�ieny[125℄ and reliability [165℄.As pointed out in [253℄, e�etive grid omputing depends on how e�iently tasks are as-signed to available resoures. Grid shedulers must deide whih resoures to shedule a jobon, based on the available information about their status. In this regard, grid shedulingand alloation strategies must onform to the demands of the users (i.e. QoS agreementssuh as response time, ost, et.), and balane them aording to the usage poliies setby resoure providers (i.e. seurity, exeution e�ieny, resoure utilization, et.). Gridsheduling omplexity is further exaerbated by the fat that there exist two levels of op-eration, namely loal-sheduling and meta-sheduling. More spei�ally, loal-shedulingis onerned with managing loal tasks' exeution poliies and resoures on every om-puting node, whereas meta-sheduling provides high-level oordination and orhestrationbetween di�erent loal shedulers by assigning tasks to the appropriate omputing nodes,typially within a virtual organization. From this point of view, in order to ahieve optimalsheduling at both levels, the trade-o� between ful�lling the requirements set by loal usagepoliies, and by virtual organizations must be addressed. In this regard, meta-shedulingis often hindered by the limited availability of up-to-date information about grid nodes,whih an result in less-than-optimal deisions.To satisfy the aforementioned issues, urrently deployed grid infrastrutures [118, 243℄rely on entralized or hierarhial shemes to support all the ativities required to runthe grid: resoure disovery, resoure and data management, meta-sheduling, as well asseurity servies. The business requirements imposed by virtual organizations inherentlysupport suh an organizational model, although it is important not to neglet the onretedemand for �exible, autonomi, and self-manageable grids, in order to redue deploymentosts, inrease reliability, and meet dynami users' needs [23℄.Grid systems have an inherent heterogeneous, dynami and distributed nature [37℄;as noted in [164℄, urrent designs must fae several hallenges that urrently limit theprospets and full bene�ts of grid omputing. Among the onerns highlighted in [164℄,our researh fouses on problems related to shedulers' interoperability and to relianeon entralized meta-sheduling solutions. In this regard, we aim at enabling fully deen-tralized meta-sheduling to e�etively ope with the hallenges that raise barriers to awider adoption of grids. Our vision is supported by the multitude of network appliationsthat have already reognized and exploited the advantages of distributed and deentralizedapproahes. Reent advanes in the underlying network tehnologies (i.e. ubiquity, linkbandwidth, et.) also ontribute towards this diretion, and an established shift toward de-entralized solutions has been observed also within grid arhitetures, with the emergene



5.1. Grid Meta-Sheduling 107of deentralized resoure disovery mehanisms [142, 259℄, fully distributed load-balaningsolutions [61℄, and deentralized meta-sheduling algorithms [272℄.In agreement with our vision of a grid supported by deentralized servies, this hapterpresents a fully distributed meta-sheduling protool, named aria, that supports oordi-nation between nodes to enable e�ient global dynami sheduling aross multiple sites.The meta-sheduling proess is performed online, and takes into aount the availabilityof new resoures as well as hanges in atual alloation poliies. Moreover, the proposedapproah aims at addressing the salability and adaptability of grids, to optimally exploitdynamially hanging grid resoures. Salability onerns both the size of the grid andthe atual load. On one side new grid nodes must seamlessly merge into the grid system;on the other side, jobs must be distributed over all suitable nodes to avoid hot spots, aslong as requirements are met. We refer to adaptability as the ability of sheduling andresheduling tasks aording to global or loal sheduling poliy hanges. In this respet,a balane between adaptability and stability is required to avoid oupling situations thathave an adverse e�et on performane,5.1 Grid Meta-ShedulingThe bene�ts of large-sale distributed omputing largerly depend on the ability of the gridmiddleware to manage large sets of heterogeneous resoures, and perform optimal taskalloation on these resoures. From this point of view, in order to meet the expetationsusers and resoure owners, grid sheduling must alloate jobs on the most suitable mahinesand avoid overloading just a few of the most apable ones. To this extent, meta-shedulingservies play an important role that delineate the apabilities and performane of a gridinfrastruture.This hapter fouses on deentralized sheduling mehanisms, namely by enabling fullydistributed meta-sheduling aross heterogeneous nodes, while additionally providing dy-nami load-balaning support by resheduling jobs aross nodes whenever possible. Tobetter understand the issues raised by grid job alloation, in this setion we review relatedwork onerning both meta-sheduling and load-balaning, and disuss the transition fromentralized approahes toward deentralized ones.While fully deentralized ooperative grid solutions bear advantages over their entral-ized ounterparts, interoperability of the diverse systems involved is often hindered by in-frastrutural or organizational problems, suh as lak of standardization [112℄. Although anumber of projets have been started to promote ollaboration between projets, and to im-plement standards for failitating the ommuniation between di�erent platforms [230, 44℄,interoperability remains one of the open issues for future generation grids [220, 110℄. Asdisussed in [134℄, to alleviate these issues, ollaborative sheduling solutions should avoidenforing ontrol over loal resoures by establishing a lear separation between global andloal resoure management. Furthermore, resoure management and sheduling should relyon adaptive deision-making in order to ope with unpreedented situations. Moreover,meta-sheduling should also be onerned with load balaning through dynami reallo-ation of jobs. Unfortunately, whereas task alloation on a single site bene�ts from theavailability of loal, omplete, and preise information about available resoures, deen-tralized approahes have to tradeo� between information and network tra�.



108 Chapter 5. Meta-ShedulingCentralized Sheduling Traditional grid models [118, 243℄ rely on entralized or hi-erarhial meta-shedulers that have a global view of the resoures shared on the gridor by their virtual organization. Researh has ome up with very e�ient entralizedmeta-sheduling mehanisms [17℄ that an take full advantage of a global view of the gridand provide optimal alloation of tasks on resoures. It should be noted that entralizedsheduling does not neessarily require a orresponding entral information repository, butan rely on distributed information systems [232℄. Nonetheless, these approahes still on-tain bottleneks for salability of the system, as well as single points of failure that maya�et the robustness of the grid as a whole. An extensive literature review of entralizedsheduling mehanisms is outside the sope of this work; an in-depth analysis of relatedstate-of-the-art an be found in [96℄.Deentralized Sheduling The design of deentralized and adaptive sheduling algo-rithms is onsidered in [256℄, with nodes performing load-balaning within a limited setof neighbors. Two strategies are proposed, namely transferring jobs at preise intervalsor depending on their arrival time; both strategies have the goal of ahieving similar to-tal exeution time on all nodes. In the diretion of reduing the average response time,[112℄ proposes an adaptive deentralized mehanism that employs an evolutionary fuzzyalgorithm to selet the best site for job delegation among the set of all possible andidates.The Organi Grid [68℄ introdues a novel paradigm that rede�nes the grid as self-organized biologially inspired omplex system of agents providing deentralized shedulingfor heterogeneous tasks on a large number of resoures. Nodes are organized as a tree, withthe root being the job originating node, and faster nodes loated loser to it; nodes anpush tasks down the tree depending on the atual load of their hildren.Colletive intelligent behavior of mobile agents has been also exploited in [61℄ to sup-port grid task load-balaning in a fully distributed environment. Job requirements andresoures are pro�led using a performane analysis tool alled PACE [217℄, and mathedto appropriate resoures by the agents. Reognizing the importane of deentralization andself-organization for the future of grid systems, [104℄ presents a distributed grid shedul-ing framework where nodes group into ommunities aording to resoure similarities anddisseminate their atual state. The sheduling proess is deentralized and makes use ofinformation about remote nodes in order to �nd the best resoures to ful�ll a request.The distributed meta-sheduling model presented in [272℄ operates on the priniple ofsubmitting a job to the least loaded sites and subsequently revoking it on all but the onethat has ommened its exeution. An evident drawbak of this model is the overloadingof a large number of shedulers with jobs that are frequently anelled. Another deentral-ized sheduling and load-balaning tehnique is detailed in [25℄, whih depends on nodesretaining jobs or submitting them to their neighbors aording to a heuristi on loal load.A di�erent approah is taken in [179℄, where the seletion of a target neighbor for jobdelegation is driven by the available bandwidth; this is made possible by the adoption ofa simplisti model that onsiders all tasks as idential and fouses on the time required totransfer data.The potential of applying peer-to-peer tehnologies to support deentralized grid shedul-ing is highlighted in [109℄, with a fully distributed solution where nodes perform a gossip-based exploration of the network for the purpose of generating an optimal shedule on



5.2. aria Protool 109the disovered resoures. Peer-to-peer gossiping protools are also employed in [103℄, butwith the goal of disseminating the state of the available resoures aross the grid; thisinformation is ahed by remote nodes and used to optimally alloate inoming jobs.The GridIS [297℄ sheduling algorithm employs a peer-to-peer ommuniation modelthat enables resoure providers to bid for the delegation of a job. Job requests are submittedto the grid through a portal that broadasts them in an unstrutured peer-to-peer overlaynetwork. The objetive of GridIS is to satisfy both resoure onsumers and providers, byensuring high suessful exeution rates, respetively fair alloation of bene�ts. Similarly toGridIS, the work presented in [99℄ makes use of a strutured peer-to-peer overlay networkto disover nodes wishing to arry out a job; furthermore, resheduling is exploited to avoidstarvation of jobs failing to be exeuted.In ontrast to the aforementioned researh approahes, we aim at supporting fullydistributed task meta-sheduling by means of a lightweight oordination protool whihtakes into aount the dynamiity and heterogeneity of resoures. Among the distintivefeatures that di�erentiate our solution, we highlight the fat that it does not require detailedsheduling information from other nodes, and that it promotes asynhronous peer-to-peerinteration between nodes as well as overall self-organization. In this regard, we assert thatour solution ontributes to the previously mentioned drive towards �exible and autonomigrids.5.2 aria ProtoolThe aria protool [55℄ aims at providing fully distributed task meta-sheduling aross aheterogeneous grid. The name aria (air in Italian, denoting the aim to be lightweight)omes from the initials of the di�erent message types de�ned in our protool, namelyREQUEST, ACCEPT, INFORM, and ASSIGN (Table 5.1). An additional STATUSmessage is employed by the protool to support synhronized exeution of interdependenttask pools in advane reservation sheduling. In the following we detail the operationalphases of the protool, as well as the information exhanged between nodes by means ofthe aforementioned messages.5.2.1 AssumptionsOne of the fundamental design priniples of the aria protool is that of being agnos-ti to shedulers, namely not requiring nor depending on any partiular loal shedulingpoliy. Moreover, to emphasize the idea of promoting fully distributed operation, it isassumed that grid nodes are onneted by means of a peer-to-peer overlay network. Thealgorithm nonetheless requires that diret ommuniation between any pair of nodes ouldbe established. Aording to these premises, and for evaluation purposes, we base ourexperiments on a self-organized overlay maintained by BlåtAnt-S, as it aounts for alower bandwidth onsumption than the -R version.aria supports all phases of the job exeution, from submission to ompletion, andexploits the time-to-exeution to perform dynami resheduling of jobs aross grid nodes,thus ahieving better global throughput and load-balaning. To obtain resoures for jobdelegation, a spei� REQUEST message is de�ned by the protool: this task an either



110 Chapter 5. Meta-Shedulingbe aomplished by proessing suh message on a suitable grid information system orby broadasting it on the network using a dediated fully distributed resoure disoveryprotool. Beause of its fully distributed design, job submission an be performed fromany node; furthermore, exeution may our on any node whose resoure pro�le mathesthe job requirements. For simpliity, we do not allow nodes to deline inoming jobsthat have been already aepted, and while every node may hold several jobs within itssheduling queue, only one job at a time an be exeuted. Bath jobs are assumed to beindependent, while advane reservations an be made for jobs omposed of interdependenttasks. Moreover, to avoid hekpointing issues, preemption and migration of running jobsare not onsidered, while seurity issues are also out of the sope of this researh.To desribe resoure and job pro�les the protool does not speify any partiular for-mats: atual implementations may hoose to use one of the available job desriptionshemas suh as JSDL [115℄. In aordane with this view, also the mathing logi deter-mining whether a task an be exeuted on a spei� node is left to spei� implementations,whih may hoose to de�ne job aeptane rules based not only on pro�le mathing butalso aording to seurity, or aounting poliies. Finally, exeution of tasks and transmis-sion of task-related data between nodes are not within the fous of this researh. In thisregard, the evaluation provided in the following will assume that jobs are responsible fortransferring the required data on the node where exeution takes plae.Table 5.1: Protool Messages and FieldsACCEPTNode's address Job UUID CostREQUESTInitiator's address Job UUID Job Pro�leINFORMAssignee's address Job UUID Job Pro�le CostASSIGNInitiator's address Job UUID Job Pro�leSTATUSJob UUID Status value5.2.2 Job Submission PhaseThe �rst phase of the protool overs the submission of jobs and their initial handlingby the node that eah job was submitted to. Beause the protool aims at ahievingoptimal grid-level meta-sheduling, submitting a job to a partiular node does not ensurethat exeution will take plae loally, unless suh a requirement is spei�ed in the jobdesription.To univoally trak jobs sheduled on the grid, eah job is assigned a universal uniqueidenti�er (UUID). Nodes reeiving job submissions from users or appliations are referred toas initiators for these jobs. In order to �nd andidates for the exeution of a job, initiatorsissue resoure disovery queries aross the grid by means of REQUEST messages. Thesemessages an either be sent to a grid information system or broadasted to a random



5.2. aria Protool 111subset of nodes of a peer-to-peer overlay. The submitting node then waits for a prede�nedtimelapse for inoming query replies. When pools of interdependent tasks are submittedto a grid node, eah task is independently managed by means of separate REQUESTmessages.Besides the initiator's address and the job UUID, a REQUEST message ontains thepro�le of the resoures required to arry out the job, whih also spei�es an Estimatedjob Running Time (ERT) aording to a grid-level aepted baseline regarding omputingpower. The estimated running time an be omputed by means of a job pro�ling toolsuh as PACE [217℄. Job pro�les may also de�ne additional job exeution onstraints, forexample to prevent exeution of a job outside the boundaries of a virtual organization.5.2.3 Job Aeptane PhaseIn a fully distributed implementation, upon reeption of a REQUEST message, a nodedetermines whether the requirements of the job pro�le math its own resoures. If therequest annot be satis�ed, the message is further forwarded on the peer-to-peer overlay,otherwise a ost value for the job based on atual resoures and urrent sheduling isomputed. The ost information is sent bak to the job's initiator by means of anACCEPTmessage. If the REQUEST message is proessed by the grid information system, thelatter would either reply aording to available information or forward the message to eahmathing node, whih would then reply diretly to the job initiator.The ost value depends on the adopted loal sheduling state, with lower values beingused to indiate better o�ers. The initiator evaluates inoming ACCEPT responses, andselets the best quali�ed node (i.e. the node providing the lowest ost). The job is delegatedto the latter, whih is referred to as the urrent assignee, by sending an ASSIGN message.In order to keep trak of the sheduling status of eah job, the initiator and the assigneeboth store a referene to eah other: whenever the assignee hanges, the initiator is noti�ed.Currently, three ost funtions have been onsidered, namely Estimated Time To Com-pletion (ETTC), Negative Aumulated Lateness (NAL) and Total Delay Time (TDT) forbath, respetively deadline and advane reservation shedulers. As we assume that dead-line sheduling o�ers and advane reservations ones are not mixed with bath ones, valuesprodued by di�erent funtions do not neessarily need to be omparable.Estimated Time To Completion (ETTC) This funtion de�nes the ost for a job jas: ETTCcost(j) = ETTCjwhere ETTCj orresponds to the relative time that the job is expeted to �nish a-ording to the loal sheduling poliy and atual load of the node (determined by thesheduling queue).Negative Aumulated Lateness (NAL) Targeted at deadline sheduling algorithms,it omputes the ost for a job j and an existing loal sheduling queue Q as follows:



112 Chapter 5. Meta-ShedulingNALcost(j) =
∑

job ∈ Q′

δ(job,Q′) ∗ |γjob|with
Q′ = Q ∪ {j}

γjob = deadlinejob − ETCjob

δ(job,S) =







−1 γjob ≥ 0,∀ job ∈ S,

0 γjob ≥ 0 ∧ ∃ w ∈ S : γw < 0,

1 otherwise
ETCjob refers to the absolute time that the job is expeted to �nish aording to theloal sheduling poliy and the atual load of the node (determined by the sheduling queue

Q′), while deadlinejob is the upper time limit for job ompletion; hene γjob represents thelateness of the job. If no deadline is missed, the ost funtion returns a negative result,with smaller values indiating better sheduling solutions.Total Delay Time (TDT) This funtion is used to evaluate the opportunity of alloat-ing a time-slot in advane reservation sheduling. The ost value is determined by the sumof all the estimated delays for sheduled jobs; if the sum is zero, the ost is the negativevalue of the sum of free time between jobs in order to have shedules with longer idle timesrepresent better hoies. For an existing loal sheduling queue Q the ost is thus:TDTcost(Q) =

{

−idleQ γQ = 0,

γQ γQ 6= 0with
idleQ = sum of idle time between sheduled jobs
γQ = max(0,

∑

job ∈ Q

(ESTjob −ARSjob))

ESTjob = estimated job start aording to loal shedule
ARSjob = advane reservation slot beginning timeWhereas positive values aount for the inability of the node to ope with reservations,negative values are an inverse value of the idleness of a node, hene smaller values indiatebetter sheduling options.5.2.4 Dynami Resheduling PhaseAn important aspet of the aria protool is the dynami resheduling of jobs. Thissupports the salability and adaptability of the meta-sheduling mehanism by enablingjob re-alloation to re�et possible hanges in the state and availability of resoures. Thisan typially be the result of new nodes onneting to the grid, or existing jobs terminatingearlier than predited or being anelled.



5.2. aria Protool 113At the time of job assignments, assignees represent the initiators' pereived optimalsolutions for job exeution; however, it should be expeted that better alternatives maypotentially arise in the future. Aordingly, the assignee attempts to �nd andidatesfor resheduling of jobs in its queue while their exeution has not yet started. For thispurpose, INFORM messages, whih are either proessed by a grid information systemor disseminated aross the network, are employed. Beause the resheduling proess isexeuted periodially, a fully distributed implementation should make use of a low-overheaddisovery protool to avoid exessive bandwidth onsumption. In our evaluation, a fullydistributed probabilisti �ooding protool is used.The struture of INFORM messages relates to that of REQUEST messages, in thatthey both ontain a full desription of the job's pro�le. The goal of INFORM messagesis to disover nodes that might arry out the exeution of the job at a lower ost than theurrent assignee. For this reason, INFORM messages also arry the atual ost value, asomputed by the aforementioned ost alulation funtions. Nodes will typially generateINFORM messages for a set of jobs in their queue aording to a seletion mehanism.For bath shedulers jobs with the largest waiting times are preferentially seleted, fordeadline shedulers jobs with the least lateness are hosen, whereas for advane reservationshedulers tasks with the largest delays are onsidered.The behavior of a node upon reeption of INFORM messages is similar to the oneonerning REQUEST messages, with the node �rst heking whether it an satisfy thejob's requirements and then evaluating the orresponding ost for exeution. Unlike RE-QUEST messages, an ACCEPT reply will only be sent to the urrent assignee if a lowerost an be guaranteed. Thresholds may be introdued to prevent resheduling when thebene�t does not justify the additional overhead, for example if the exeution time is onlyredued by a small fration or if the atual job transfer time surpasses the bene�t to begained from the resheduling operation.The resheduling proess is ompleted when the urrent assignee reeives the ACCEPTmessage and aordingly reassigns the job to the new assignee by means of an ASSIGNmessage. To ease traking of jobs, and enable failsafe mehanisms in the event of anassignee's rash, resheduling ations are noti�ed to the job's initiator by means of aSTATUS message with value SCHEDULED.5.2.5 Job Exeution PhaseThe last onern of the protool is to manage the exeution of jobs. Whereas in bath,deadline, and simple advane reservation sheduling eah job an be started as soon as itreahes the head of the sheduling queue, the sheduling of pools of dependent tasks is moreompliated. More preisely, tasks in eah pool depend on eah other, and thus need to beonurrently exeuted. This situation prevents sheduling of multiple dependent tasks inthe same job queue if the available resoures on the node prelude their parallel exeution.Moreover, the meta-sheduling protool must implement a mehanism to synhronize thestart of the exeution of eah task in a pool.aria deals with this issue by means of STATUS messages: when a job is ready forexeution, the initiator is noti�ed with a STATUS message with value READY. Thejob initiator waits until all tasks in a pool are ready, and then noti�es the orresponding
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Figure 5.1: Job sheduling and exeution statesremote nodes with a RUNNABLE notie. Nodes reeiving suh noti�ation may hangethe exeution state of the orresponding jobs to RUNNABLE, so that the sheduler anbegin their exeution, subsequently hanging their status to RUNNING. A node an alsorevoke the exeution of a pool, by sending a STATUS message with value REVOKE, tothe job initiator, whih then relays it to all job tasks' assignees. Jobs are automatiallyrevoked when a node has one task ready for exeution and one or more dependent tasksin the same queue that annot be onurrently started. Figure 5.1 illustrates the jobexeution states and all possible transitions. To prevent denial of servie attaks from amisbehaving node, eah node involved in the exeution of a task (initiators and assignees)an ask for its revokation, for example if it delays other tasks for a too long period.5.2.6 ExampleTo better understand the di�erent phases of the protool we propose here a simple exampleof the submission, aeptane, and dynami resheduling steps of a single task job. Weonsider an overlay omposed of 13 nodes, depited in Figure 5.2, and a fully distributedimplementation of the protool.At step 1, a job is submitted to node A, whih beomes the initiator of that job andis responsible for the initial delegation. Next, a resoure disovery operation is started bysending REQUEST messages on the network (step 2). All nodes mathing the job pro�leompute the estimated ost aording to their sheduling poliy, and reply to the initiatorwith an ACCEPT message: in this example we suppose that replying nodes are B,F , and

P (step 3). The lowest ost o�er (in this example, the one submitted by node B) is hosenby the initiator at step 4, and the job is assigned by means of a ASSIGN message. Theassignee (B) replies with a STATUS message with value SCHEDULED to signal thatthe job has been orretly sheduled.Beause the resoure availability on the network may hange, before the start of theexeution, B tries to reshedule the job, by searhing for lower ost o�ers: aordingly,INFORM messages are transmitted on the network (step 5). Eah reeiving node hekswhether its resoure pro�le mathes the job desription and whether it an provide alower exeution ost. If both onditions hold, an ACCEPT message is sent to the urrentassignee (step 6), and the resheduling proess is onluded by transferring the job to thenew assignee (step 7), and notifying the initiator of the hange of assignee by means of aSTATUS message from Y with value SCHEDULED. As long as exeution of the job hasnot yet ommened, several resheduling operations an take plae.
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Figure 5.2: Job submission, aeptane and resheduling example5.3 EvaluationTo evaluate the behavior of the aria protool in a grid environment, an in depth analysisby means of simulations was performed. To take into aount all the harateristis ofthe meta-sheduling problem, several aspets are onsidered: sheduling optimality, adap-tiveness, salability, onsumed network bandwidth, and load-balaning. More spei�ally,our evaluation fouses on measuring the average total exeution time, the tra� generatedby protool messages, the number of idle nodes, of delayed jobs in advane reservationsheduling, and of missed deadlines. From this point of view, our analysis aims at bothassessing the qualities of the dynami meta-sheduling protool, as well as providing asensitivity analysis of the main protool parameters, in order to understand their in�ueneon the aforementioned assessment metris. This setion introdues the evaluation setupand the details of eah of the onsidered senarios, a summary of whih an be found inTable 5.2.All senarios are evaluated on a ustom event-based simulation platform, where om-muniation lateny between nodes is based on realisti timing as in Chapter 3. For eahsenario 5 simulation runs were performed.5.3.1 Overlay networkWe assume that grid nodes are onneted by means of an unstrutured peer-to-peer overlay,and that nodes trust eah other and interat diretly among them. Aordingly, we employ



116 Chapter 5. Meta-ShedulingSenario Fous of the evaluationA Bene�ts of dynami resheduling with bath shedulersB Robustness and load balaning apabilitiesC SalabilityD Bene�ts of dynami resheduling with deadline shedulersE Bene�ts of dynami resheduling with advane reservationF SensitivityTable 5.2: Summary of the meta-sheduling evaluation senariosan overlay of 500 nodes onstruted and maintained using BlåtAnt-S. The algorithmparameters values are as de�ned in the baseline senario presented in Chapter 3, althoughfor our evaluation purposes the network is maintained stable; an exeption is the senariofousing on the salability, where an expanding overlay growing up to a size of 700 nodesis employed.5.3.2 Grid resouresEvaluation of the protool is onduted on an overlay of heterogeneous resoures, wherethe apabilities of eah node are determined by its pro�le. Resoure pro�les are omprisedof di�erent �elds that inlude both hardware and software properties of the mahine.Similarly to the evaluation of resoure disovery presented in Chapter 4, the followingaspets have been onsidered: the implemented arhiteture (e.g. amd64, power, et.),available memory, available disk spae, and operating system (e.g. Linux, Solaris, et.).Upon initialization, the simulator randomly assigns a pro�le to eah node aording to aprobability distribution de�ned as follows:
• Arhitetures are hosen aording to the list published on the TOP500 Superom-puting Sites (www.top500.org) at the time of the writing of this thesis. The probabil-ity distribution is as follows: amd64 87.2%, power 11%, ia-64 1.2%, spar 0.2%,mips 0.2%, ne 0.2%;
• Available Memory and Disk Spae are both independently and uniformly hosenas either 1, 2, 4, 8, or 16 Gigabytes;
• Operating Systems installed on eah node are based on the aforementioned TOP500list, with the following distribution: Linux 88.6%, Solaris 5.8%, Unix 4.4%, Win-dows 1%, BSD 0.2%.To aount for heterogeneity in the omputational apabilities of eah node, eah sys-tem has an assoiated real value performane index p between 1 and 2, that ompares itsomputing power to a baseline referene. The latter orresponds to the hardware on�gu-ration used to alulate the Estimated job Running Time (ERT). The simulator uses thisindex to derive the Estimated job Running Time on a partiular node (that is referred toas ERTp). More spei�ally, the ERTp is de�ned as the ERT divided by the performaneindex p.



5.3. Evaluation 1175.3.3 Grid jobsThe resoure requirements for submitted jobs are de�ned aording to the harateris-tis de�ned by resoure pro�les. User submitted jobs are reated by means of a randomgenerator, and submitted to random nodes in the overlay that subsequently initiate theirdelegation by sending REQUEST messages on the network. Eah job is haraterized byparameters de�ning the resoures required to exeute the job. This information is mathedagainst grid resoures pro�les, and inludes the required arhiteture, memory, disk spae,and operating system. The values of eah job parameter are randomly hosen. To evalu-ate the impat of the distributions of requests on the performane of the meta-shedulingmehanism, two probability distributions have been onsidered: the �rst one, onsiders thesame probability distribution as used for node pro�les, while the seond one is based on auniform probability distribution. Whereas the former distribution is employed in all of ourevaluation senarios, the latter is onsidered only for a sensitivity analysis. Job desriptorsalso de�ne an ERT, whih is randomly assigned aording to a normal distribution N (µ, σ)with µ = 2h30m, σ = 1h15m, using a lower bound of 1h and an upper bound of 4h toavoid extreme ases.In a real grid, the ERT only provides a rough estimation of the atual job runningtime. Aordingly, in our simulation eah node omputes an Atual Running Time (ART)by purposely introduing estimation errors. The ART for a job j (whih is unknown untilexeution ompletes) on a node with performane index p is derived from ERT, ERTp, anda relative error ε as follows:
ARTj,ε = ERT p

j + driftj,εwith
driftj,ε = U[−1,1] ∗ ERTj ∗ εIn our evaluation we assume an auray of ±10% of the Estimated job Running Time(ε = 0.1).Unless otherwise spei�ed, in all senarios jobs are submitted starting from 20 minutesup until 3 hours 7 minutes into the simulation. A new job is submitted to a random nodein the overlay at 10 seonds intervals, resulting in a total of 1000 jobs submitted to the gridin eah senario. For deadline sheduling senarios, jobs' deadlines are set to an absolutetime equal to the urrent time plus their ERT plus an additional random interval followingthe aforementioned normal distribution, with µ = 15h, σ = 7h30m, hene, the deadline isset 15 hours after the expeted absolute ompletion time. In advane reservation senarios,the reservation start is set 15 hours after the submission time on average, based on the samedistribution as for deadlines. In advane reservation of task pools, eah job is omposedof a pool of interdependent tasks, the size of whih is hosen uniformly at random in therange [1, 4]; beause of their interdependeny, jobs in the same pool an be exeuted onlyif simultaneously started.5.3.4 Tra� EvaluationTo evaluate the amount of bandwidth onsumed by the meta-sheduling protool, thefollowing tra� estimations have been onsidered for the aria messages overhead:
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− REQUEST, INFORM, and ASSIGN: 5 KBytes;
− ACCEPT and STATUS: 1 KByte.Our evaluation fouses on a fully distributed implementation of the meta-shedulingmehanism, thus REQUEST and INFORM messages are disseminated on the networkusing a probabilisti �ooding protool. Conerning broadasting strategies, REQUESTmessages are forwarded on the network at a distane of 9 hops, to at most 4 neighborsat eah step. Conversely, in senarios with dynami resheduling, INFORM messages aregenerated for at most 2 sheduled jobs andidate for resheduling every 5 minutes, and areforwarded at a distane of 8 hops, to at most 2 neighbors at eah step. These values arebased on the properties the underlying peer-to-peer overlay management algorithm andthe parameters set for its onstrution, and guarantee a near optimal operation withoutoverloading the network.5.3.5 Loal Sheduling PoliiesThe aria protool aims at providing a meta-sheduling servie that is independent ofthe loal sheduling poliy implemented by eah node. Hene, we assume that di�erentshedulers are available. In our simulations, the sheduling poliy is randomly assigned toeah node upon reation, and in this respet, the following sheduling poliies have beenonsidered:
• First-Come-First-Served (FCFS): inoming jobs are appended to the shedulingqueue aording to the loal arrival time (i.e. reeption of an ASSIGN message);
• Shortest-Job-First (SJF): the sheduling order depends on the jobs' ERT, withshorter jobs being exeuted �rst;
• Earliest-Deadline-First (EDF): used only for deadline sheduling, this poliyprioritizes jobs with an earlier deadline (as spei�ed in their pro�le);
• Fair Advane Reservation (FAR): used in advane reservation senarios, thispoliy enables the alloation of time-slots for exeuting a task. If ollisions betweenalloations happen, the earliest submitted job is given priority;
• Fair Pool Advane Reservation (FPAR): similar to FAR, this sheduling poliysupports dependeny between tasks within the same pool. When a job is ready forexeution, the assignee informs the initiator by means of a STATUS message withvalue READY: jobs an be started only when all tasks in the pool are ready forexeution (i.e. when the assignees reeive a STATUS with value RUNNABLE).For bath sheduling senarios FCFS and SJF are used: these shedulers are interoper-able beause these shedulers share the same ost funtion (as de�ned in Setion 5.2.3). Inour evaluations, we use the term Mixed to refer to senarios where eah node is randomlyassigned a sheduling poliy between FCFS and SJB. Unless otherwise spei�ed, in ourbath sheduling experiments the Mixed poliy is employed. In deadline senarios the EDFsheduling poliy is employed; onversely, in advane reservation senarios FAR and FPARare used.



5.3. Evaluation 1195.3.6 Senario detailsIn the following we detail the goals of eah evaluation senario and the main parameter val-ues used to assess the behavior of the protool aording to these goals. The orrespondingresults are presented in Setion 5.4.A - Bene�ts of dynami resheduling with bath shedulers To quantify thebene�ts that an be ahieved with dynami resheduling, senarios A experiment withdi�erent loal bath sheduling poliies (FCFS, SJF, Mixed) and measure the averagewaiting and exeution times, as well as the number of ompleted jobs during the simulation.B - Robustness and load balaning apabilities The robustness of the meta-shedulingprotool is assessed by means of low and high load situations in senarios B. More spei�-ally, in low load situations the job submission rate is halved to one job every 20 seonds,with jobs submitted from 20 minutes to 5 hours 54 minutes into the simulation. Respe-tively, for high load situations the submission rate is doubled, with one submission every
5 seonds, starting from 20 minutes up to 1 hours 45 minutes into the simulation.C - Salability Senarios C gauge the salability by means of a dynamially expandingnetwork. Starting from the original network of 500 nodes, new nodes are added every 50seonds starting from 1 hours 23 minutes, inreasing its size to 700 nodes at approximately
4 hours 10 minutes into the simulation. These new nodes represent newly available gridresoures that an take part in the sheduling and resheduling proess. The evaluation ofthese senarios aims at determining the load-balaning e�et amongst available resouresahievable by means of dynami job resheduling.D - Bene�ts of resheduling with deadline shedulers Conerning deadline se-narios, the fous of the evaluation is on the protool's ability to math jobs' deadlines.Two poliies are onsidered: with the �rst, deadlines are set 15 hours after the estimatedompletion time on average; with the seond, the available time to omplete the job isredued to 2 hours 30 minutes after the estimated ompletion time on average. All jobs inthese senarios employ the EDF sheduler.E - Bene�ts of resheduling with advane reservation The bene�ts of dynamiresheduling in advane reservation senarios is assessed by measuring the number of de-layed jobs and the average delay. In this regard, both simple (one task) reservations, aswell as advane pool reservations are onsidered. The onsidered loal shedulers are FARand FPAR, for simple reservations and pool reservations respetively.F - Sensitivity To better understand the behavior of aria under di�erent irumstanesand to assess how main variables in�uene the outome of the sheduling proess, a sen-sitivity analysis is onduted. More spei�ally, the following parameters and evaluationonditions are onsidered:
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• F1 - Sensitivity to ERT preision: the sheduling and resheduling deisionsdepend on the estimated running time of eah job. To determine the in�uene of theauray of suh an estimation we evaluate the behavior of the protool by varyingthe error introdued in the simulation. Two sets of experiments with a Mixed bathsheduling poliy are onsidered. In a �rst set of experiments, the relative error of theAtual Running Time is inreased from ±10% to ±25% (ε = 0.25). Subsequently,we employ an optimisti estimation where the ERT is always lower than the atualtime, with ε = 0.1, and driftj,ε is replaed with |driftj,ε|). Finally, we ondutexperiments where the estimation mathes the ART (ε = 0).
• F2 - Sensitivity to jobs andidate for resheduling: the number of jobs thateah node tries to reshedule at one determines the amount of INFORM messagesbroadasted on the network. The goal of this evaluation is to assess the bene�ts ofonsidering resheduling for a di�erent number of jobs. In partiular, we hange thedefault value of 2 andidate jobs in the queue, to 1 and 4 respetively.
• F3 - Sensitivity to job submission node: in all other senarios jobs are submittedto a random node in the grid, to simulate geographially dispersed users aessingtheir loal grid nodes. To determine if the node that ats as job broker in�uenesthe outome of the sheduling proess we simulate a grid where only a single nodeis responsible for job submission, and ompare the results regarding the averageompletion time and the tra� with ones obtained for our baseline strategy.
• F4 - Sensitivity to job pro�les distribution: to assess the in�uene of the jobpro�les distribution on the sheduling performane we experiment with a uniformdistribution instead of the one mathing the atual distribution of resoures.5.4 ResultsHaving detailed the parameters of the onsidered evaluation senarios, we present anddisuss here the orresponding results. First, a disussion on the bene�ts of the dynamiresheduling mehanism of the aria protool, its salability, and its e�etiveness to ad-dress the load-balaning problem is presented. This is followed by an analysis of deadlineand advane reservation sheduling senarios. Finally, the results of the sensitivity anal-ysis pertaining to di�erent aspets of our meta-sheduling approah are disussed. Thepresented job ompletion times refer to an average over all 1000 submitted jobs.5.4.1 A - Bene�ts of dynami resheduling with bath shedulersFigure 5.3 (a) shows the total exeution time ahieved on bath shedulers. The SJFand Mixed senarios demonstrate the bene�ts of dynami resheduling, although it isnoteworthy to highlight the omparative optimality of the FCFS poliy without dynamiresheduling. This result is attributed to the fat that FCFS preserves the optimality ofthe initial delegation by not modifying the sheduling order upon new submissions. Onthe ontrary, with SJF submission of a job with shorter ERT than already sheduled jobsmodi�es the expeted ompletion time for all jobs with longer ERT. Another interesting



5.4. Results 121fat onerns the omposition of the total job ompletion time of SJF and Mixed; morespei�ally, while dynami senarios exhibit larger exeution times, there is a redution inthe ompletion time, whih proves the e�etiveness of the resheduling phase in providingshorter waiting times and its ability to distribute jobs to nodes based on atual waitingqueues length rather than just on omputational power. Similar observations about thebene�ts of dynami resheduling with SJF and Mixed poliies an be made with regardsto the evolution of ompleted jobs, shown in Figure 5.3 (b).

(a) Total time (b) Completed jobs

() Idle nodes (d) Tra�Figure 5.3: A - Bene�ts of dynami resheduling with bath shedulersAs illustrated in Figure 5.3 (), dynami resheduling helps ahieving better resoureutilization when using either the SJF or Mixed sheduling poliies. In partiular, thenumber of idle nodes dereases by about 100, indiating an improved balaning of theoverall grid load.The resulting network overhead is shown in Figure 5.3 (d): for all onsidered shedulingpoliies the resheduling operations double the tra�, from an average of 7000 MBytes to
14000 MBytes. The largest part of the tra� is attributed to REQUEST and INFORMmessages, whereas other messages aount for only a negligible part of the overall tra�.Although the tra� inrease is important, it is ompensated by the ahievable bene�ts ofredued exeution times.



122 Chapter 5. Meta-Sheduling5.4.2 B - Robustness and load balaning apabilitiesThe robustness of our meta-sheduling protool in respet to the total exeution timeversus the frequeny of job submissions is demonstrated in Figure 5.4 (a). Even when thesubmission rate is doubled from 1 job every 10 seonds (as in other experiments) to 1 jobevery 5 seonds, the bene�ts of dynami resheduling are notieable, with a redution ofthe average ompletion time from 3h 21m to 2h 27m. Conversely, with a slower submissionrate of 1 job every 20 seonds, dynami resheduling lowers the average ompletion timefrom 2h 06m to 1h 43m.

(a) Total time (b) Idle nodes

() Tra�Figure 5.4: B - Robustness and load balaning apabilitiesFigure 5.4 (b) depits the resoure utilization in all experiments. As noted in senariosA, dynami resheduling enhanes the load balaning aross grid nodes by making use ofabout 100 nodes more. Finally, Figure 5.4 () shows the overall bandwidth onsumptionneessary to exeute the 1000 jobs submitted to the grid. It is interesting to note that alower submission rate results in notieably less resheduling tra� (INFORM messages).The reason behind this is the ability of starting job exeution earlier beause queues are lessloaded as more time passes between eah submission; hene, the number of jobs andidatefor resheduling is lowered.



5.4. Results 1235.4.3 C - SalabilityIn Figure 5.5 (a) we assess the salability of aria pertaining to the redution of the totalexeution time in an expanding grid. As expeted, dynami resheduling enables betterusage of newly available resoures, and redues the total exeution time from 2h 41m to 2h
5m. As it emerged in senarios A, the redution of the waiting time aounts for a shortertotal ompletion time, although the exeution time inreases. This result is supported bythe analysis of the evolution of the number of ompleted jobs shown in Figure 5.5 (b).

(a) Total time (b) Completed jobs

() Idle nodes (d) Tra�Figure 5.5: C - SalabilityThe load balaning e�et is demonstrated in Figure 5.5 (): as the size of the networkinreases, resheduling leads to the utilization of up to 100 additional nodes. The networktra� results shown in Figure 5.5 (d) reveal an interesting behavior of the meta-shedulingprotool: as the network size is inreased, the overall tra� generated by INFORM mes-sages is redued. The reason for this is the inreased availability of nodes that an startjob exeution sooner, thus reduing the number of resheduling opportunities.5.4.4 D - Bene�ts of resheduling with deadline shedulersPertaining to deadline sheduling, important performane metris are the number of dead-lines, the lateness (i.e the time left from ompletion to the deadline), and the missed time(i.e. the time, if any, past the deadline). As shown in Figure 5.6 (a), dynami resheduling



124 Chapter 5. Meta-Shedulingsigni�antly redues the ourrene of missed deadlines. In partiular, their number isdereased from 189 to 1 when the deadline is set 15 hours after the estimated ompletiontime, and from 273 to 55 when the deadline is set 2.5 hours after the estimated ompletiontime. With deadlines set at ERT + 15h, the average total lateness is also inreased from
5h 33m to 6h 45m, meaning that more time is left between ompletion times and deadlines;with deadlines at ERT + 2.5h a slight derease an be observed, from 1h 44m to 1h 36h,but the total lateness for suessful jobs inreases as more deadlines are ful�lled. In allexperiments, the average missed time is dereased substantially when dynami reshedul-ing is employed, going from 1h 53m to 3m with ERT + 15h, and from 1h 25m to 33mwith ERT + 2.5h. Finally, Figure 5.6 (b) shows a signi�ant inrease in the number ofINFORM messages as tighter deadlines are enfored.

(a) Deadlines (b) Tra�Figure 5.6: D - Bene�ts of resheduling with deadline shedulers5.4.5 E - Bene�ts of resheduling with advane reservationIn advane reservation sheduling the system must ensure that alloated time slots areenfored, and that jobs an start exeuting on time. However, when multiple reservationsare made, ollisions may happen and some reservations might need to be delayed. Beauseour protool strives to provide a best e�ort meta-sheduling servie, an important metrito assess its bene�ts is the average delay time aross all reservation slots. In ontrast todeadline sheduling, the exeution of a job annot be arbitrarily started, but has to waituntil the reservation start time; additionally, with task pools, eah task has to wait untilall dependent tasks are ready. Eah one of the 1000 submitted jobs is omposed of 1 to 4dependent tasks; in eah simulation run a total of 2495 tasks on average was sheduled onthe grid. Beause eah task is sheduled independently, dynami resheduling is performedon a per-task basis rather than per-job.As shown in Figure 5.7 (a) the average delay is signi�antly redued when dynamiresheduling is employed, from 38m to 5m per job in single task reservations, and from 6h
45m to 2h 40m per task in task pool reservations. Moreover, onerning the sheduling oftask pools, a substantial derease in the number of revoked jobs, that are redued from 295down to 20, an be observed. Conerning network overhead, Figure 5.7 (b) highlights thesigni�ant inrease in the bandwidth onsumed by INFORM messages, whih bespeaks
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(a) Delays (b) Tra�Figure 5.7: E - Bene�ts of resheduling with advane reservationfor a more unstable behavior of the protool in the onsidered onditions.5.4.6 F - SensitivityResults of the sensitivity analysis will lead to a better understanding of the meta-shedulingprotool and lay more solid foundations for further researh.F1 - Sensitivity to ERT preision An important assumption of the protool is theavailability of an aurate job running time estimation. Beause of estimation errors, theatual running time might be higher or lower than the ERT. The results shown in Figure5.8 (a) provide an insight on the performane of the dynami resheduling mehanismimplemented by aria. The balaned nature of the introdued error aounts for thehomogeneity of the average ompletion time aross all experiments. The stability of theprotool is on�rmed by the overall tra� generated during the experiments (Figure 5.8(b)), whih remains stable and onsistent aross all simulations.

(a) Total time (b) Tra�Figure 5.8: F1 - Sensitivity to ERT preision



126 Chapter 5. Meta-ShedulingF2 - Sensitivity to jobs andidate for resheduling The behavior of the dynamiresheduling phase is determined by the number of jobs that ould potentially be reas-signed. In this regard, we are interested in evaluating the impat of di�erent reshedulingstrategies with two relevant sheduling poliies, namely bath and advane reservationsheduling. More preisely, we onsider the in�uene of a di�erent number of jobs andi-date for resheduling on the average job ompletion time and on the number of delays, forbath and advane reservation shedulers respetively.The results depited in Figure 5.9 show no noteworthy variation in the total omple-tion time when bath shedulers are onerned, and negligible di�erenes with single taskadvane reservation sheduling. On the ontrary, with task pool reservations reshedulingof 1 and 4 tasks ahieves a lower average job start delay than the default poliy of 2 tasks.In this ontext, resheduling 1 task seems to provide the best performane, although thenumber of revoked jobs is slightly inreased.

(a) Total time (b) Tra�

() Delays (d) Tra�Figure 5.9: F2 - Sensitivity to jobs andidate for reshedulingConerning the network overhead, the bandwidth onsumption to be aounted toINFORM messages signi�antly inreases as more jobs are onsidered for the reshedulingphase. From this point of view, seletion of 1 andidate emerges as the best option in allsheduling poliies.



5.5. Auray of the results 127F3 - Sensitivity to job submission node In all previous senarios jobs are submittedto a random node in the grid, thus favoring an even distribution of the requests arossall available resoures. In order to assess the in�uene of this hoie on the performaneof the meta-sheduling protool, experiments where all 1000 jobs are submitted to onlyone single broker were onduted. Conerning the average total ompletion time, Figure5.10 (a), highlights no signi�ant di�erene between the two submission strategies whenresheduling is enabled, and only a small inrease is notieable when no resheduling isallowed. On the ontrary, an analysis of the tra�, illustrated in Figure 5.10 (b), showsequivalent results.

(a) Total time (b) Tra�Figure 5.10: F3 - Sensitivity to job submission nodeF4 - Sensitivity to job pro�les distribution The last set of experiments fouseson the distribution of job pro�les. Instead of generating job requests aording to thesimulated distribution of resoures, experiments with uniformly distributed requests havebeen performed. The results onerning the average total ompletion time are illustratedin Figure 5.11. It is evident that a uniform distribution worsens the performane of themeta-sheduling proess, and almost denies all bene�ts of the dynami resheduling phase.This degradation of the performane an be attributed to the large number of jobs thatrequire very rare resoures: in this ase, the queues on nodes sharing suh resoures quiklybeomes overloaded, leading to substantial inrease in waiting times.5.5 Auray of the resultsResults detailed in this hapter represent an average over 5 simulation runs for eah se-nario. Time for ompletion graphs are omputed on an average on 1000 jobs in eah run.The obtained performane data has proven to be very stable, with minimal variationsaross all runs and senarios. Conerning the average total time for ompleting a job, therelative standard deviation is 2.6%; onversely, for the average waiting time it is 5.98%,and for the average exeution time 1.48%. Pertaining to deadline sheduling, the mostrelevant relative variations of missed deadlines were found in senario D with dynamiresheduling enabled, with a deviation of 97% on an average of 1 job with ERT + 15h,
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(a) Total time (b) Tra�Figure 5.11: F4 - Sensitivity to job pro�les distributionand of 43% on an average of 55 jobs with ERT + 2.5h; without dynami resheduling theobtained variations were in the range of 13.10%, on an average of 189 jobs with ERT +15h, and 5.8% on an average of 273 jobs with ERT + 2.5h.5.6 SummaryIn this hapter, we foused on the problem of e�iently alloate tasks aross geographi-ally distributed resoures. We presented a fully distributed grid meta-sheduling protoolnamed aria that aims at improving the e�ieny of heterogeneous grids, as well as ad-dressing the related salability and adaptability onerns. From this point of view, ourwork re�ets the vision of next-generation grids that strive to evolve into reliable, �exi-ble, autonomi, and self-manageable systems that require minimal user intervention andredued deployment osts.The proposed meta-sheduling protool, named aria, is based on simple messagesexhanged between grid nodes over a peer-to-peer overlay, and does not depend on theatual implemented loal sheduling poliies. This enables better integration with existinggrid middlewares and failitates its adoption. The entral point of our work is the supportfor dynami resheduling of jobs, whih enables optimal job realloation under dynamionditions, for example by making use of newly available resoures and by taking intoaount hanges in resoure utilization.Throughout extensive experimental evaluation, we validated the behavior of the proto-ol and assessed signi�ant results onerning the e�etiveness of our approah. In parti-ular, we ahieved shorter average exeution times with bath shedulers, a redued numberof missed deadlines, and dereased delays in advane reservation sheduling. The proto-ol also demonstrated its ability to enhane load-balaning amongst the nodes. Finally atra� analysis pinpointed an aeptable bandwidth onsumption when ompared to theaquired bene�ts, thus suggesting the viability of our approah in real-world deployments.
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Contents6.1 SmartGRID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306.2 Solenopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1316.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326.2.2 Solenopsis Framework Overview . . . . . . . . . . . . . . . . . . . . . 1326.2.3 Ant programming language . . . . . . . . . . . . . . . . . . . . . . . . 1346.2.4 Support for transparent strong migration . . . . . . . . . . . . . . . . 1346.2.5 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1356.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135SmartGRID is a novel grid middleware that aims at supporting grid appliations run-ning over a set of non-dediated resoures. From this point of view, SmartGRID followsthe idea of implementing a desktop grid that brings together the power of a large numberof personal systems voluntarily shared by their users to provide on-demand aess to om-puting resoures. In ontrast to traditional grid infrastrutures, the SmartGRID visionis geared toward peer-to-peer interation between systems, and promotes self-organizationand adaptiveness.To abstrat from the volatile and unreliable nature of the onsidered underlying re-soures, a multi-layered arhiteture has been onsidered. More spei�ally two main on-erns have been identi�ed, namely that of resoure monitoring and of high-level task man-agement. Aordingly the middleware is omposed of two loosely oupled funtional layers,the Smart Signaling Layer (SSL) and the Smart Resoure Management Layer (SRML),whih are onneted by means of a Datawarehouse Interfae (DWI). This design promotesa lear separation between low-level ommuniation amongst peers and high-level taskalloation ativities.SmartGRID also di�ers from ommon grid middleware platforms, suh as Globus[117℄, in that it operates in a fully distributed and self-organized way, hene loweringthe need for supervised operation and reduing deployment e�ort. Moreover, for low-level ativities, suh as resoure disovery and ommuniation, bio-inspired solutions areemployed in order to ahieve the required harateristis of adaptiveness, robustness andself-organization.The work presented in this thesis mainly fouses on the SSL; in partiular, the overlaymanagement algorithm and the resoure disovery mehanisms are employed to providebasi servies to the grid and enable sharing of resoures among nodes. In addition,the meta-sheduling protool onerns the SRML. In the following we thus group all the



130 Chapter 6. SmartGRIDomponents presented in previous hapters and desribe how they are integrated within theSmartGRID framework. In setion 6.1 the details of the multi-layered arhiteture arepresented, while in setion 6.2 the platform used for the SSL is introdued and a disussionabout its strengths is presented.6.1 SmartGRIDSmartGRID is a distributed grid middleware that aims at providing stable, robust, ande�ient resoure management over a heterogeneous and volatile pool of geographiallysparse resoures. The arhiteture is omposed of three layers (Figure 6.1): the SmartResoure Management Layer (SRML), the Smart Signaling Layer (SSL), and a dataware-house interfae for loosely oupled interation. The SRML is in harge of managing userrequests and job sheduling by exploiting information gathered from the SSL, whih pro-vides resoure disovery and low-level ommuniation between nodes.In the onsidered senario, eah SmartGRID node runs an instane of both the SRMLand the SSL. Conerning the software aspet, the SRML is implemented byMaGate nodes[149, 148℄, whereas the SSL is based on Solenopsis nodes [52℄. The design of the node ismodular, to allow for easy replaement of single omponents and reuse of existing modulesfor di�erent purposes.

Figure 6.1: SmartGRID node arhitetureSmart Signaling Layer The Smart Signaling Layer (SSL) manages low-level ommuni-ation between grid nodes as well as providing resoure disovery. In this ontext, severalof the omponents presented in this thesis have been integrated in the SSL, as shownin Figure 6.1. In partiular to manage the overlay onneting SmartGRID nodes, theBlåtAnt algorithm is employed. To support this funtionality from a pratial point ofview, a ustom runtime platform tailored for the deployment of bio-inspired ant algorithmsalled Solenopsis (presented in detail in the forthoming setion) has been developed.Finally, to support e�ient resoure disovery the approah presented in Chapter 4 hasbeen employed.



6.2. Solenopsis 131Smart Resoure Management Layer The Smart Resoure Management Layer (SRML)is in harge of supervising the usage of resoures and mediating interation between theuser and the system by providing an interfae for task submission and traking. The SRMLexploits information from the SSL to e�iently shedule tasks either on loal resoures oron remote nodes. Aordingly, the SRML interoperates with the existing sheduling in-frastruture and obeys to loal and remote resoure usage poliies. At the SRML level,eah node is managed by a software appliation alled MaGate [148℄. As shown in Figure6.1, the MaGate itself is omprised of di�erent omponents that enable interation withloal resoures, remote MaGate, external servies as well as users and appliations. Inthe following, a brief review of eah omponent is provided.
− Kernel Component: represents the ore of the MaGate, and provides the logito analyze job desriptions, monitor system load, take sheduling deisions, andoordinate the operation of the other omponents.
− Loal Resoure Management (LRM) Component: onnets to low-level re-soure management systems and middlewares suh as Globus [117℄ or Uniore[21℄.
− External Component: o�ers a plug-in mehanism that enables the integrationof additional servies, suh as resoure disovery or hardware monitoring. In theontext of SmartGRID, the Datawarehouse is interfaed by means of an externalomponent.
− Interfae Component: deals with job submissions from di�erent soures, suh asgrid users and appliations.
− Community Component: manages onnetions between MaGates, in order tosupport external job sheduling requests and job transfer requests.Datawarehouse The SSL and SRML ommuniate through a datawarehouse, whihprovides both an asynhronous ommuniation hannel and a temporary storage. In theontext of the SmartGRID middleware, the datawarehouse also helps maintaining learseparation of onerns between the two funtional layers.Although the main ontribution of this thesis fall within the Smart Signaling Layer,researh spans over all layers. In partiular, the overlay management algorithm introduedin Chapter 3 and the resoure disovery protool in Chapter 4 onern the SSL, while themeta-sheduling framework presented in Chapter 5 onerns the SRML.6.2 SolenopsisSolenopsis 1 [52℄ is a framework for the deployment of fully distributed ant algorithmsomposed of a programming language and an exeution environment. The framework1Solenopsis Invita, also known as Red imported �re ant, is a partiularly aggressive speies of antoriginally from South Ameria.



132 Chapter 6. SmartGRIDwas developed spei�ally for the SmartGRID projet, in order to ful�ll the need for asoftware platform to base the Smart Signaling Layer on.6.2.1 Related WorkSeveral platforms exist aimed at supporting the development of ant algorithms; noteworthyexamples are the Swarm Simulation System [209℄, MASS [146℄ and Anthill [27℄. Inthis setion we brie�y review these systems and highlight their harateristis:Swarm Simulation System The Swarm Simulation System [209℄ allows to modelmulti-agent disrete simulations at di�erent levels. The framework is objet-oriented, withagents being mapped as objets. Agents an interat with eah other, and the wholesimulation an be synhronized. The platform itself o�ers di�erent tools for algorithmpro�ling and data analysis. Unfortunately, the platform is limited to simulations and doesnot provide any support for fully distributed agent deployment.Multi-agent System Simulation Framework The Multi-agent System Simula-tion Framework (MASS) [146℄ allows aurate and ontrollable simulations of systemsomposed of ollaborative agents. Agents an sense the simulated environment and per-form a mixture of real and simulated ativities. The platform supports both disrete timeand event-based simulations, but is not targeted to fully distributed deployments.Anthill Anthill [27℄ is a Java framework that supports P2P appliation development.It provides runtime and simulation environments and it has been suessfully used toimplement the Messor [210℄ load-balaning algorithm. The runtime environment is amiddleware built on JXTA [131℄ and allows for real-world deployment of appliations. Asimulation environment is also supported and enables loal testing and evaluation of antalgorithms. Unfortunately the development of Anthill was stopped in year 2002.Beause both Swarm and MASS fous on the development and evaluation of multi-agentoordination in distributed systems with total auray, by means of a simulation environ-ment, their arhiteture is not well suited for real-world distributed dynami environments.In ontrast, Anthill is not only aimed at supporting the design and analysis of P2P sys-tems, but at the implementation of suh systems in real network environments as well. Tosuh an extent the Anthill framework is the one mostly similar to Solenopsis, althoughit does not support transparent and strong migration of agents.6.2.2 Solenopsis Framework OverviewSolenopsis is omprised of several omponents that support both fully distributed exe-ution (deployment mode), with an instane of the platform running on eah of the par-tiipating hosts, as well as loal exeution (or simulation) of several nodes (simulationmode). It is noteworthy to mention that for the development of ant algorithms, there is nodistintion between these two senarios: implemented algorithms an be exeuted eitherin simulation or deployment mode, without modi�ation; moreover, simulated nodes an



6.2. Solenopsis 133be seamlessly ombined with deployed ones in a fully distributed environment to enableomplex evaluation senarios.Deployment mode Figure 6.2 depits the arhiteture of a node in a fully distributedsetup. On start-up, a on�guration sript is proessed by the platform daemon. Thesript ontains the list of operations required to set up the node and initialize the requiredplug-ins, and is exeuted in the platform's shell. As a result of this phase a node daemonis instantiated, along with all the plug-ins needed for implementing the extended funtion-alities of the node (for example, the BlåtAnt algorithm) as well as for exposing aessto external resoures (suh as the Datawarehouse). To enable ommuniation betweennodes, the platform daemon provides a mail server (that implements a ustom proto-ol based on TCP/IP ommuniation): the server alloates a uniquely identi�ed mailboxto the node daemon whih is used to send and reeive ants from, respetively to, otherSolenopsis nodes. Atual data transfer is managed by the mail servie. Inoming antsand loally started ants are ompiled and then exeuted in sandboxed virtual mahines,the exeution of whih is managed by a preemptive sheduler. The sheduler enablesonurrent exeution of many virtual mahines without reating an exessive number ofthreads. When an ant requests to migrate to another node, the built-inmigration servieserializes the ant's state and transfers it to the target node, where exeution is resumed.

Figure 6.2: Solenopsis deployment mode with node detailSimulation mode In simulation mode (Figure 6.3) eah platform daemon manages mul-tiple node daemons. In ontrast to deployment mode, plug-in servies an be shared be-tween node daemons to redue memory footprint. Moreover, simulation spei� plug-ins



134 Chapter 6. SmartGRIDto provide useful global statistis, suh as network measurements, an be enabled.
Figure 6.3: Solenopsis simulation mode6.2.3 Ant programming languageAnts are developed in a Lisp-like language alled DLisp whih is ompiled to a byte-oderepresentation and exeuted by a stak-based virtual mahine on the node. The algorithmdesribing the behavior of the ant as well as its runtime state are enapsulated in the antitself. It is thus possible to reate and exeute di�erent ant speies in a distributed systemwithout replaing omponents or funtionality on eah node. Moreover, as the evaluationand the deployment environment are the same, there is no need to re-implement algorithmsfor large-sale deployment. As the ant behavior is exeuted inside a virtual mahine, antode is sandboxed and only servies made available by the node an be aessed.The programming language supports di�erent basi data types suh as numbers (inte-gers and �oating point), strings, lists, ditionaries, simple losures (lambda), and nil (theonly type whose semanti value is the boolean False); funtions to manipulate these typesare available as built-in. Moreover, maros an be developed to extend the language withustom onstruts.6.2.4 Support for transparent strong migrationOne of the strengths of Solenopsis is the possibility to transparently migrate ant-agentsaross nodes, as part of their exeution. This feature is partiularly important for bio-inspired ant-algorithms, beause mobility is an inherent apability of eah agent. Thedetails of transparent strong migration are shown in the example illustrated in Figure 6.4.Several steps are involved in the migration proess:1. the ant exeuting on a node alls the migrate funtion to migrate to another node;2. the all is managed by the migration servie running on the node;3. a snapshot of the atual running state of the ant is requested from the ontrol om-ponent of the node; the state inludes the urrent program ounter as well as the fullexeution stak;4. the ant state is passed to the mail servie to be sent to the target node;5. the mail servie serializes the reeived data, and forwards it to the loal mail server;



6.3. Summary 1356. the serialized ant state is transmitted to the reeiving node's mail server;7. the ontrol omponent of the target node is instruted to reate a new virtual mahineinstane, and restore the exeution state;8. the virtual mahine is reated, and sheduled for exeution;9. exeution of the ant ode restarts, and the instrution following the all to migrateis proessed (the migrate funtion returns false if the migration does not sueed).

Figure 6.4: Strong transparent migration example6.2.5 ExtensibilityTo integrate Solenopsis within the SmartGRID middleware a modular design approahwas employed. Additional servies, written in Java, an be used to extend the funtion-ality of node servies and enable aess to external omponents and resoures from theant ode. In the ontext of SmartGRID, the modules that are implemented as exten-sions to Solenopsis inlude the BlåtAnt algorithm, the resoure disovery servie, andaess to the Datawarehouse to enable ommuniation with the SRML. It is noteworthyto mention that the generi and modular design of Solenopsis enabled the integrationof its ore omponents (namely, the ompiler, virtual mahine, and basi servies) intoanother projet, alled FlexibleRules [121℄, aimed at supporting the development ofdigital board games.6.3 SummaryIn this hapter we presented the SmartGRID, a novel grid middleware that aims atbridging the gap between appliations and heterogeneous and volatile resoures, by pro-moting a fully distributed design and self-organized operation. SmartGRID integrates



136 Chapter 6. SmartGRIDthe onepts and the solutions proposed in this thesis, namely the BlåtAnt overlay man-agement algorithm, detailed in Chapter 3, the proative ahing mehanism to improveresoure disovery disussed in Chapter 4, and the aria protool for fully distributedmeta-sheduling, presented in Chapter 5. The framework is based on a multi-level designomposed of two layers: the Smart Signaling Layer (SSL) and the Smart Resoure Manage-ment Layer (SRML). The �rst is in harge of managing low-level aspets of the middleware,suh as ommuniation between grid nodes and resoure disovery, whereas the latter dealswith high-level onerns suh as job sheduling and resoure management. The SSL is im-plemented by a runtime platform alled Solenopsis that supports the development anddeployment of ant-based distributed algorithms, whereas the SRML is omposed of Ma-Gate omponents that provide an interfae to grid appliations, shedulers, and existinggrid middlewares.
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Contents7.1 Overlay management . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377.1.1 Future researh diretions . . . . . . . . . . . . . . . . . . . . . . . . . 1387.2 Resoure disovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397.2.1 Future researh diretions . . . . . . . . . . . . . . . . . . . . . . . . . 1397.3 Meta-sheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397.3.1 Future researh diretions . . . . . . . . . . . . . . . . . . . . . . . . . 1407.4 SmartGRID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1407.4.1 Future researh diretions . . . . . . . . . . . . . . . . . . . . . . . . . 1407.5 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Self-organization and adaptiveness are ommonly viewed as important aspets to sup-port reliable, e�ient, and salable distributed solutions. In this respet, the developmentof novel self-organized and adaptive solutions for distributed systems was the impulse thatmotivated the researh arried out in this thesis. To this extent several essential aspetsof autonomi management and exploitation of distributed systems have been studied, inpartiular the onstrution of an optimized peer-to-peer overlay with bounded diameterand girth, the implementation of a resoure disovery mehanism based on loal shortutahes to inrease the e�ieny of �ooding based protools, and the de�nition of a fullydistributed meta-sheduling protool that improves task alloation aross large pools ofresoures. Eah of these aspets has been thoroughly researhed, and a omprehensiveliterature review of existing solutions has not only motivated but also driven our researhand developments. Moreover, a lear separation of onerns enables the inorporation ofthe solutions implemented in this thesis into a variety of situations where fully distributedand autonomi operation is required, although the target of the evaluation has been thegrid senario de�ned by the SmartGRID projet.The solutions that have been proposed �t extremely well into the emerging self-organi-zation realm. In this hapter we summarize the main ontributions for eah of the topisonsidered in this thesis, and highlight their distintive harateristis as well as futureresearh diretions.7.1 Overlay managementThe proposed overlay management algorithm, alled BlåtAnt, answers the problem ofmaintaining an optimized overlay that enables ommuniation between peers with a re-dued number of retransmissions. By means of bio-inspired, fully distributed tehniques



138 Chapter 7. Conlusionsthe overlay is managed in a self-organized and adaptive way, and is salable as well asrobust to both node and ommuniation failures. The behavior of BlåtAnt has beenempirially studied under di�erent network onditions, and results of simulations haveshown to be promising in respet to the possibility of employing bio-inspired optimiza-tion in ommuniation networks. More spei�ally, the two proposed implementationsof the algorithm, namely BlåtAnt-R and BlåtAnt-S, enable e�etive management ofpeer-to-peer overlays and provide satisfatory performane under hurn and in the eventof unexpeted ommuniation failures. The produed overhead on network resoures aswell as the the salability of the system have been deemed reasonable in respet to otherexisting solutions (suh as Gnutella or Newsast). Hene, in response to the researhproblem set in Chapter 1, �Can we exploit self-organization and bio-inspired solutions toprovide an optimized peer-to-peer ommuniation and servie provisioning framework?�, wean assert that our ontribution provides a su�ient and a�rmative answer.7.1.1 Future researh diretionsAlthough the onsidered evaluation senarios have proven the viability of BlåtAnt, moreextensive experimentation is undoubtedly required to understand the impliations of dif-ferent network onditions on the robustness and reliability of the algorithm. Moreover,full sale tests in a real network would help determine the limits of our approah, betteromprehend the in�uene of the onsidered parameters, and drive further improvementson the underlying logi. In this sense, an interesting researh diretion will onsider the op-timization of the overlay aording to the underlying network topology, in order to reduetransmission delays and low-level tra�.The ollaborative proess of deteting long paths and small yles arried out by nodesould be improved by letting nodes exhange more information. In partiular, if a nodedetets a yle for whih it is not responsible (hene it annot break), a noti�ation tothe master of that yle ould be sent. Conversely, neighbor nodes ould be queried inorder to determine distanes on the graph with more preision. Moreover, to detet somepartitioning situations, nodes ould analyze the information brought by Disovery Ants andmeasure its entropy. In a similar way, the optimization proess ould be made adaptive inrespet to the pereived dynamiity of the network.Seurity should also be studied in a more omprehensive manner; in partiular ananalysis of the robustness of the system in presene of misbehaving peers, and againsttargeted attaks has been negleted in this thesis, as its sope and time plan did not allowus to delve into this �eld. Future work should de�nitely onsider suh onerns in orderto produe a solid distributed platform.Furthermore a detailed omparison with other existing approahes (besides the onesonsidered in this thesis) would help us understand the bene�ts and weaknesses of ourapproah. In this regard, the lak of a ommon evaluation platform where di�erent peer-to-peer algorithms ould be evaluated under the same premises is onsidered as the mostimportant issue that would need to be solved in the future.



7.2. Resoure disovery 1397.2 Resoure disoveryThe seond question set in Chapter 1 onerns the problem of loating information ina distributed system, and asks �Can we improve existing resoure disovery mehanismusing fully distributed bio-inspired solutions?�. The approah that we proposed in thisthesis implements a loal routing ahe on eah node that stores referenes to other nodesin the overlay that share similar resoures. In order to redue the overhead derived fromupdates to the ahe, whih are ahieved by means of proative queries broadasted on thenetwork, an epidemi algorithm was employed to merge the ontents of loal ahes betweennodes. In this regard, a bio-inspired solution like epidemi ahe merges enabled us tomanage loal ahes with minimal network overhead, without sari�ing the quality of theontained information. By means of extensive experimentation in di�erent senarios, thebene�ts of suh semanti-aware tehniques were evident, even when ombined with anothermehanism aimed at improving �ooding-based resoure disovery, namely repliation. Asdetermined by evaluation on di�erent types of overlay, the improvements brought by theproposed approah are independent from the peer-to-peer topology, hene our solution anbe implemented in a variety of senarios.7.2.1 Future researh diretionsIt would be of merit to ompare our solution with other �ooding improvement tehniques,and on di�erent peer-to-peer overlays (either unstrutured or strutured). Di�erent for-warding tehniques should also be onsidered: in this ontext we �nd non-forwardingapproahes presented in [303, 188℄ interesting. In the same sense, the forwarding strategyemployed in the ahe ould be improved, for example by favoring routing towards nodeswith higher similarity: this solution would nonetheless require similarity values to be storedin the ahe itself.Several improvements of the proative ahing sheme are possible. In partiular, re�ne-ments to the similarity funtion ould be introdued to support more omplex semantis,although the one used in our evaluation to determine mathing resoures is appropriatefor grid senarios. Another aspet worth onsidering in future researh works onerns theoutome of the merging proess: whereas the implemented solution �lters the entries toretain after a merge by seleting the most reent ones based on their age information, moreuseful information ould be retained by employing information about the similarity.7.3 Meta-shedulingE�ient task-alloation onerns the last question that we asked in Chapter 1, and toanswer it a fully-distributed meta-sheduling mehanism alled aria was presented inChapter 5. Our solution implements a lightweight protool that enables deentralizedoordination of loal shedulers, without requiring eah node to dislose the details ofits own sheduling poliy, whih ensures �exibility and salability. Empirial evaluationvalidated the bene�ts of the protool in di�erent onditions in terms of dereased total jobexeution time and improved load-balaning.



140 Chapter 7. Conlusions7.3.1 Future researh diretionsThe enouraging results obtained by our evaluation provide a solid base for future devel-opments, whih should primarily fous on some issues that were onsiously set aside inthis thesis. In this regard, interesting future researh diretions inlude evaluation withgrid shedulers in a real grid deployment. In this thesis we modeled several simple poliiesfor bath and deadline sheduling, nevertheless real shedulers deal with more unexpetedsituations, that inlude job revoation, requirement hanges, queue holding, and hardwareor software failures. Also, the sope and time plan of this thesis did not allow us to diginto the problem of parallel job sheduling on the same node, having hosen to employ asimpler model where only one job at a time exeutes on a node. Therefore, a wider rangeof sheduling and exeution poliies ould be introdued.The logi to determine the nodes best suited to shedule tasks on ould be hanged toinlude information other than the expeted ost. More spei�ally, as proposed in [148℄,node trust and reputation ould be taken into aount.As for overlay management, reliability and seurity within the proposed shedulingframework should be studied in a more omprehensive manner. Conerning the �rst is-sue, our evaluation assumed that no failure ould terminate job exeution; in this sense,mehanisms to enable job reovery and resubmission in the event of a failure should beimplemented in the future. Conversely, regarding seurity in our evaluation job alloationwas performed under the premise that trust relationships exist between eah partiipatingnodes, although this annot be assumed in a real distributed senario.7.4 SmartGRIDWe presented the SmartGRID middleware arhiteture, that aims at providing a fully-distributed solution to operate a grid environment. SmartGRID builds on two funtionallayers, and the work presented in this thesis overs the signaling layer, whih is responsiblefor ommuniation between nodes and monitoring of the network. In this ontext, weproposed a software framework alled Solenopsis, whih enables the development andexeution of ant-based distributed algorithms, and helps bringing together all the afore-mentioned funtional omponents (overlay management, resoure disovery, sheduling)into the SmartGRID arhiteture. By means of a simple, modular design, our solutionis also �exible and easily extensible, and ould be implemented in other senarios. Thepromoted programming language enables fast prototyping of ant mobile agents, and is sup-ported by a runtime environment that supports transparent strong migration aross theoverlay. This feature simpli�es the development of mobile ode, by removing the hassle ofrequiring expliit exeution state serialization and de-serialization.7.4.1 Future researh diretionsIn the ontext of the SmartGRID projet, future work will fous on evaluating all as-pets of the middleware, in partiular job submission and exeution, in a full-sale gridenvironment. Furthermore, further development of Solenopsis should improve supportfor ontrolled simulation onditions, for example by onsidering network lateny, as well



7.5. Epilogue 141as by implementing additional measurement and statistial utilities.7.5 EpilogueSelf-organization an bring a deisive improvement in the performane, reliability, and ro-bustness of distributed systems. In this ontext, bio-inspired unsupervised solutions anbe used to ahieve self-organization and optimal operation of networked systems. Theproposed framework of algorithms shows that it is possible to exploit self-organized behav-iors to support or improve di�erent areas of distributed omputing, namely peer-to-peeroverlay management, resoure disovery, and task alloation. The entral part of our work,whih onsists of the BlåtAnt algorithm, ahieves fully distributed management and op-timization of a peer-to-peer overlay by means of a proess that uses bio-inspired tehniques.Beside that, epidemi algorithms have proven to be a simple yet e�ient solution to shareinformation between nodes, and improve searh in unstrutured overlays. Finally, self-organization an also be used to ahieve optimal fully-distributed task alloation in grids,thus support bene�ts in terms of performane, salability and robustness. Undoubtedlywe do not laim that bio-inspired solutions address to a full extend the problems of self-organization and self-management of distributed systems. Nonetheless in the onsideredsenarios they have proved to be suitable approahes providing satisfatory performane.This further strengthens our belief that self-organized and bio-inspired tehniques are wor-thy ontenders in the �eld of distributed systems design.
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