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Exploiting self-organization for the autonomi
 management ofdistributed systemsAbstra
t: This thesis fo
uses on algorithms to support di�erent aspe
ts of distributedsystems management and their implementation using self-organized, adaptive, and bio-inspired te
hniques. Three main topi
s are 
overed in the thesis: peer-to-peer overlaymanagement, e�
ient resour
e dis
overy, and de
entralized task allo
ation. Con
erningpeer-to-peer overlay management, a bio-inspired algorithm 
alled BlåtAnt was devel-oped. BlåtAnt is used to build and maintain an optimized peer-to-peer overlay throughthe 
ollaborative behavior of di�erent spe
ies of mobile ant agents. Conne
tions betweenpeers are modi�ed to bound the diameter of the overlay and to remove redundant linksthat may result in ex
essive 
ommuni
ation tra�
. The initial idea has evolved into twofully distributed and fault resilient solutions: BlåtAnt-R and BlåtAnt-S. In order tosupport e�
ient resour
e dis
overy, a de
entralized sear
h proto
ol that improves proba-bilisti
 �ooding by means of a proa
tive 
a
hing me
hanism was introdu
ed. The proposedsolution is based on epidemi
 information sharing, and provides important improvementsin the re
all rate with minimal network overhead. Finally, to support de
entralized taskallo
ation, and provide intelligent s
heduling de
isions a
ross multiple grid nodes, a 
ol-laborative 
ommunity s
heduling algorithm named aria, whi
h aims at serving the gridas a whole has been implemented and evaluated. Based on the resear
h performed in thisthesis, it is our opinion that self-organization 
an bring a de
isive improvement in theperforman
e, reliability, and robustness of distributed systems.Keywords: Distributed Systems, Peer-to-Peer Systems, Self-Organization, Overlay Man-agement, Resour
e Dis
overy, Bio-inspired Computing, Grid S
heduling





Utilizzo di metodologie auto-organizzate per la gestione autonoma disistemi distribuitiSommario: Questa tesi vuole assumere 
ome oggetto d'analisi degli algoritmi per lagestione di diversi aspetti dei sistemi distribuiti, non
hè la loro implementazione tramitel'impiego di me

anismi auto-organizzati, adattivi e bio-ispirati. Tre sono i temi trat-tati nella tesi: la gestione di una rete overlay basata sulla te
nologia peer-to-peer (P2P ),la ri
er
a d'informazione attraverso metodi 
ompletamente distribuiti, e l'allo
azione de-
entralizzata di 
ompiti su un insieme di sistemi distribuiti. Per quello 
he riguarda ilprimo tema, ovvero la gestione di un overlay P2P, viene des
ritto un algoritmo 
he miraall'ottimizzazione delle 
onnessioni tra sistemi ispirato al 
omportamento delle 
olonie diformi
he. Le 
onnessioni vengono modi�
ate dall'algoritmo ridu
endo sia il diametro dellarete sia il numero di 
ollegamenti ridondanti, al �ne di limitare il tra�
o generato dalla
omuni
azione tra sistemi. L'idea iniziale si evolve in due implementazioni 
ompleta-mente distribuite, 
hiamate BlåtAnt-R e BlåtAnt-S. Su

essivamente, per permetterela ri
er
a d'informazione sulla rete, presentiamo un proto
ollo de
entralizzato 
he miglioral'e�
ienza dei metodi di ri
er
a esistenti. La soluzione proposta è basata sullo s
ambiodi informazioni tra i nodi della rete attraverso un proto
ollo epidemi
o. In�ne, per o�rireun'ottimale allo
azione di 
ompiti sulle risorse disponibili (per esempio in una griglia 
om-putazionale, o grid), dis
utiamo un algoritmo di s
hedulazione 
ompletamente distribuito
hiamato aria. Le soluzioni proposte nella tesi sono valutate dettagliatamente, dis
uten-done i pregi e i difetti. Sulla base della ri
er
a presentata in questa tesi, è nostra opinione
he i metodi auto-organizzati possano apportare importanti bene�
i per 
iò 
he 
on
ernel'e�
ienza, la robustezza e l'a�dabilità dei sistemi distribuiti.Parole 
hiave: Sistemi distribuiti, P2P, Auto-Organizzazione, Ri
er
a d'informazione,Sistemi Bio-ispirati, Allo
azione sul grid
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Chapter 1Introdu
tion
Contents1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Evaluation S
enario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Resear
h Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . 51.5 Stru
ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Distributed systems des
ribe a 
olle
tion of independent 
omputers that appear to theuser as a single entity [276℄. Distributed systems 
an be 
lassi�ed in di�erent 
ategoriesa

ording to their stru
ture and purpose: peer-to-peer systems [58℄, ad-ho
 networks [222℄,mesh networks [18℄, grid systems [119℄, et
. Despite some di�eren
es, the 
ommon goaldriving the development and deployment of distributed systems is the ability and will-ingness of the parti
ipating entities to share lo
al resour
es with the 
ommunity, su
h as�les in peer-to-peer systems or 
omputing resour
es in grids. The bene�ts of distributedsolutions are fun
tional separation, improved reliability, higher s
alability, and redu
ed
osts [276℄. On the downside, distributed systems are inherently more 
omplex to manage,di�
ult to se
ure and to fully exploit than their 
entralized 
ounterparts. A number ofte
hniques for managing the issues raised by distributed appli
ations (su
h as 
oordinationand syn
hronization) have already been proposed in the past; unfortunately, the s
ale,dynamism, volatility, and se
urity 
on
erns of 
urrent s
enarios often require rethinking ofnew solutions [245℄. Moreover, the endowments of distributed solutions are often hinderedby the 
omplexity required for the management of the underlying infrastru
ture. Conse-quently, solutions that simplify administration and lessen the burden of 
on�guring andoptimizing distributed systems are required.Self-organization and adaptiveness 
an be 
onsidered as desirable features for improvingin this area and establish reliable, e�
ient, and s
alable distributed solutions. In parti
-ular, self-organizing systems have been put forward as a way to over
ome the 
omplexitybottlene
k [107℄, by repla
ing 
omplex 
entralized 
ontrol with fully distributed operationemerging from the intera
tion and 
oordination between a multitude of simple 
omponents.In a

ordan
e with the de�nitions proposed in [107, 126℄, we understand the term organiza-tion as stru
ture with fun
tion. Whereas stru
ture 
on
erns the arrangement (or order) of
omponents in the system (for example, the topology of a network), fun
tion is related toits purpose. Under this de�nition, a self-organizing system is able to spontaneously 
reateand maintain a fun
tional stru
ture without 
entral 
ontrol, and self-organization refersto the spontanous emergen
e of a global order [171℄ (as opposed to 
haos and entropy)resulting from distributed 
ontrol and lo
al intera
tions [145℄. The distributed nature of



2 Chapter 1. Introdu
tionself-organizing systems provides a number of advantages over their 
entralized analogues,su
h as resilien
e, robustness, gra
eful degradation and re
overy from errors [145℄. Rely-ing on the interrelationships among a large number of di�erent elements 
omposing thesystem as well as positive or negative feedba
k me
hanisms, self-organized solutions areintrinsi
ally dynami
; nonetheless, su
h dynami
ity is not arbitrary, but rather 
onvergenttoward preferable 
on�gurations that optimally ful�ll the purpose of the system. In thisregard, the adaptiveness of a system refers to its ability to modify its organization in orderto optimally �t its purpose to the 
onditions of the environment [145℄.Our resear
h spans over di�erent 
on
erns, su
h as 
ommuni
ation, information re-trieval, and resour
e allo
ation. A

ordingly, this thesis addresses major 
riti
al aspe
ts ofthe design, implementation and deployment of distributed systems, and o�ers autonomi
solutions for building an optimized peer-to-peer overlay, supporting e�
ient resour
e dis-
overy, and promoting fully distributed task allo
ation. Following the separation of 
on-
erns proposed in [151℄, we divide our system into di�erent fun
tional 
omponents, namelyoverlay management, resour
e dis
overy, and task allo
ation. The peer-to-peer overlayrepresents the foundation of our work, as it provides an adaptive 
ommuni
ation infras-tru
ture on top of whi
h high-level appli
ations have been implemented. More spe
i�
ally,a resour
e dis
overy me
hanism that exploits the 
hara
teristi
s of the overlay and lo-
al short
ut 
a
hes to e�
iently forward queries has been implemented. Additionally, atask allo
ation proto
ol has been designed to enable dynami
 and optimal distribution of
omputing tasks a
ross all available resour
es. In the rest of this 
hapter, we explore themotivation behind our resear
h, dis
uss the 
onsidered evaluation s
enario, and highlightthe bene�ts introdu
ed by our solution.1.1 MotivationIn re
ent years, the availability of a large number of networked 
omputers, high-bandwidth
onne
tions, as well as the general adoption of broadband a

ess to the Internet, enabledthe deployment of distributed systems a
hieving unpre
edented s
ale and popularity. Inthis 
ontext, grids have emerged as infrastru
tures for high performan
e 
omputing, thatserve a number of s
ienti�
 
ommunities [72℄ and leverage a large pool of geographi
allydispersed resour
es to solve large and 
omplex tasks. Conversely, peer-to-peer �le-sharingnetworks [3, 8℄ have be
ome an a

essible mass-phenomenon used by millions of users world-wide. Despite the progress made in simplifying end-user intera
tion with su
h distributedsystems, managing large s
ale deployments, enabling e�
ient a

ess to their resour
es, anddealing with se
urity aspe
ts remain a
tive domains of resear
h [289, 221℄.Based on the review of the most 
ommon unjusti�ed assumptions of distributed 
om-puting presented in [245℄ we 
an identify several 
hara
teristi
s that should be a

ountedfor in order to 
reate robust and reliable systems: fault toleran
e, asyn
hronous operation,e�
ient network usage, se
urity management, and support for dynami
 and heterogeneousnetworks. More spe
i�
ally, distributed systems must be able to 
ope with failures of bothhosts and the underlying network infrastru
ture: failures should be dete
ted and an appro-priate response should be triggered to ensure proper operation of the system. Distributedappli
ations must also not depend on syn
hronous operations, as 
ommuni
ation laten
ybetween di�erent hosts may signi�
antly di�er [307℄, and avoid assuming that the system



1.1. Motivation 3is 
omposed of homogeneous resour
es.From a stru
tural perspe
tive, di�erent ar
hite
tures have been proposed. Dependingon the s
ale, 
onstraints, and goals, 
entralized, hierar
hi
al or fully distributed man-agement is employed. On one end, 
entralized approa
hes represent simple solutions toserve a large number of geographi
ally sparse 
lients with minimal bandwidth 
onsump-tion. Central systems are easier to se
ure, and data 
onsisten
y 
an be easily ensured.Meanwhile, fully distributed designs redu
e maintenan
e 
osts and in
rease robustness byavoiding dependen
y on 
entral systems that represent potential single point of failures.Unfortunately, su
h a design introdu
es 
oordination 
hallenges and in
reases tra�
.Peer-to-peer appli
ations represent a widely known example of fully distributed sys-tems, while grids traditionally rely on 
entralized 
ontrol and servi
e provisioning. Theseopposite approa
hes mainly re�e
t the di�eren
es between peer-to-peer systems and grids.Peer-to-peer systems are highly dynami
 systems, with less engagement from ea
h parti
-ipant, while grids are relatively stable, persistent and reliable [275℄.At the fun
tional level, to solve the aforementioned management problems, resear
hhas turned to autonomi
 
omputing [172℄ as potential solution for automated and adaptivesystems [211℄. Autonomi
 systems promote self-
on�guration, self-repair, and autonomousoptimization of the quality of servi
e. In this regard, information about the environment
an be 
oupled with spe
i�
 management poli
ies to enable autonomi
 operation of thesystem in a fully de
entralized way [95, 177℄. Moreover, bio-inspired solutions [48℄ representa suitable approa
h to the problem, be
ause they inherently support all the important self-⋆features of autonomi
 
omputing.Bio-inspired 
omputing repli
ates natural phenomenons, su
h as geneti
s [176℄ or emer-gent behaviors [98℄, to solve 
omplex 
omputational problems. In 
ontrast to traditionalapproa
hes, bio-inspired solutions are generally geared toward de
entralized problem solv-ing, with te
hniques resulting from the 
ollaboration of several entities governed by simplerules. In the 
ontext of network management, a number of bio-inspired methods have beenproposed to ta
kle problems su
h as routing in 
omplex topologies [63℄ and load balan
ing[210℄. Emergen
e is of parti
ular interest for distributed systems; in systems with emergentproperties the behavior is not a property of an individual entity, but rather the result of
ollaborative intera
tions between all 
omponents. This advantage of emergent approa
hesalso a�e
ts the robustness of the system: whereas 
entralized approa
hes might su�er a
omplete breakdown in 
ase of failure, emergent solutions do not depend on single enti-ties and thus represent reliable solutions 
apable of surviving unexpe
ted situations andproblems.A

ordingly, the aim of this thesis is to investigate the implementation of novel self-organized solutions to ease the deployment of distributed systems. In parti
ular, we aimat employing bio-inspired te
hniques to provide unsupervised adaptation to 
hanges inthe environment. Furthermore, in order to address all issues related to 
entralization,we propose to base our system on fully distributed me
hanisms, and employ peer-to-peer
ommuni
ation between the 
omponents of our solution. Se
urity aspe
ts are out of thes
ope of this thesis; a review and analysis of se
urity in peer-to-peer system is available in[289, 30℄.



4 Chapter 1. Introdu
tion1.2 Evaluation S
enarioThe work presented in this thesis has evolved in the 
ontext of a novel middleware for gridsnamed SmartGRID [150℄ 1, the goal of whi
h is to provide an abstra
tion layer for thedeployment of robust and reliable grid servi
es on top of a multitude of loosely 
onne
ted,heterogeneous and volatile resour
es. The proposed solution thus aims at �lling the gapbetween grid appli
ations and the 
omputing resour
es.Whereas 
urrently deployed grid systems are relatively stable and 
omprised of a limitednumber of nodes, the vision for next-generation grids foresees large-s
ale networks with ahighly dynami
 and evolving behavior, with nodes joining and leaving the system in realtime and with the number of nodes in
reasing over time. SmartGRID envisions a grid
omputing environment that is open to a larger group of 
ontributors than traditional grids,and that requires less management e�ort. To in
rease robustness and avoid single pointsof failure, SmartGRID promotes loosely 
oupled peer-to-peer intera
tion between theengaged entities. Ea
h 
ontributing site is independently managed a

ording to lo
al usagepoli
ies; moreover, SmartGRID is designed to integrate with, and make use of, existingplatforms and infrastru
tures, thus 
reating a 
omplementary, instead of an alternative,te
hnology to in
rease e�
ien
y. In this 
ontext, interoperativity with traditional resour
emanagement systems is an essential feature of the platform.The proposed ar
hite
ture is 
omposed of two independent layers that 
ommuni
atethrough an intermediate datawarehouse, as depi
ted in Figure 1.1.

Figure 1.1: SmartGRID ar
hite
tureSmart Signaling Layer The Smart Signaling Layer (SSL) enables low-level 
ommuni-
ation between resour
es, and provides resour
e dis
overy servi
es. The primary goal of theSSL is to abstra
t from the heterogeneous and volatile nature of the underlying resour
esand network infrastru
ture to provide a robust 
ommuni
ation and servi
e provisioning1SmartGRID is supported by the Swiss Hasler Foundation, in the framework of the ManCom Initiative(ManCom for Managing Complexity of Information and Communi
ation Systems), proje
t Nr. 2122



1.3. Resear
h Problem 5framework. Operation and servi
es o�ered by the SSL degrade gra
efully in the event ofnetwork or site failure; for this, the system is based on a fully de
entralized and distributeddesign that avoids bottlene
ks and single points of failure. Furthermore, resear
h on theSSL fo
used on the implementation of a self-organized and adaptive peer-to-peer solutionby employing bio-inspired methods. In this 
ontext, of parti
ular interest are ant-inspiredapproa
hes, as they have already proven to provide robust means for network-related prob-lems su
h as routing [63℄ or load-balan
ing [210℄.Smart Resour
e Management Layer The Smart Resour
e Management Layer (SRML)is in 
harge of supervisioning the usage of resour
es and mediating intera
tion between theuser and the system by providing an interfa
e for task submission and tra
king. The SRMLexploits information from the SSL to e�
iently s
hedule tasks either on lo
al resour
es oron remote nodes. A

ordingly, the SRML interoperates with the existing s
heduling in-frastru
ture, and obeys to lo
al and remote resour
e usage poli
ies.Datawarehouse The SSL and SRML 
ommuni
ate through a datawarehouse, whi
hprovides both an asyn
hronous 
ommuni
ation 
hannel and a temporary storage. In the
ontext of the SmartGRID middleware, the datawarehouse also helps maintaining 
learseparation of 
on
erns between the two fun
tional layers.Although the main 
ontribution of this thesis falls within the Smart Signaling Layer,resear
h has spanned over all layers. In parti
ular, the overlay management algorithmintrodu
ed in Chapter 3 and the resour
e dis
overy proto
ol in Chapter 4 
on
ern theSSL, while the meta-s
heduling framework presented in Chapter 5 
on
erns the SRML.1.3 Resear
h ProblemDi�erent questions arise from the previously des
ribed s
enario.
• �Can we exploit self-organization and bio-inspired solutions to provide an optimizedpeer-to-peer 
ommuni
ation and servi
e provisioning framework?�
• �Can we improve existing resour
e dis
overy me
hanisms using fully distributed bio-inspired solutions?�
• �Can we provide e�
ient task allo
ation to optimally exploit a large number of re-sour
es by means of a fully distributed s
heduling me
hanism?�These questions summarize the resear
h problem addressed by this thesis.1.4 Contributions of this thesisA

ording to the requirements that arise from the resear
h problem and the 
onsideredevaluation s
enario, the 
ontributions of this thesis are threefold. First, it proposes analgorithm for managing a self-stru
tured adaptive peer-to-peer overlay, that is optimized



6 Chapter 1. Introdu
tionto support e�
ient 
ommuni
ation between nodes while avoiding single points of failuresand bottlene
ks. Next, it introdu
es a generi
 method for improving resour
e dis
overye�e
tiveness by exploiting lo
al 
a
hes. Finally, it addresses the problem of e�
ientlyallo
ating tasks a
ross heterogeneous resour
es by means of a lightweight meta-s
hedulingproto
ol to fully exploit the bene�ts of distributed 
omputing without imposing limitationson lo
al resour
e management. To a
hieve our goals, we introdu
e novel te
hniques andmake use of self-organized and bio-inspired methods in order to ensure robust and adaptivebehaviors.In the 
ontext of the SmartGRID proje
t, this thesis also introdu
es a software plat-form for the deployment of fully distributed bio-inspired solutions, in parti
ular thoseinvolving ant-like mobile agents. The generi
 nature of the latter enables its integrationinto di�erent proje
ts that aim at implementing and exploiting distributed swarm intel-ligen
e solutions. Furthermore, along with the aforementioned algorithms and proto
ols,this platform represents a fully fun
tional framework for supporting robust and adaptivegrid servi
es in a heterogeneous environment, as envisaged by the SmartGRID proje
t.1.5 Stru
tureThis thesis 
overs the aforementioned topi
s as follows.Chapter 1 provides an overview of the thesis, and dis
usses the motivations behind theresear
h topi
 as well as the open issues and 
hallenges to be addressed. Furthermore itde�nes the resear
h problem and highlights the 
ontributions of the thesis.Chapter 2 studies the related work in the �eld of peer-to-peer systems. Our dis
us-sion 
overs the two main 
lasses of existing peer-to-peer solutions, namely stru
tured andunstru
tured ones, and draws some 
omparisons of the 
orresponding drawba
ks and ad-vantages with help from a detailed analysis of noteworthy proje
ts. Some theoreti
alfoundations about graph theory are also presented.Chapter 3 
onsolidates the knowledge gained through this literature review in a list ofrequirements that 
onstitute the guidelines for validating our solution for the managementof a peer-to-peer overlay. Consequently, the fundamental blo
k of our resear
h, namelythat of a self-organized optimized peer-to-peer overlay is presented. Our novel overlaymanagement algorithm, 
alled BlåtAnt, represents a fully distributed solution basedon bio-inspired te
hniques. The logi
al foundations of our approa
h are �rstly validatedby an analyti
al 
onstru
tion and subsequently by empiri
al experiments based on twoimplementations that attest the qualities of the solution.In Chapter 4 we deal with the problem of providing an e�
ient resour
e dis
overyme
hanism by means of a fully de
entralized proa
tive 
a
hing system. The proposedsolution improves existing �ooding proto
ols by exploiting lo
al 
a
hes on ea
h node, thatare updated using an epidemi
 proto
ol, to dire
t queries toward nodes that are morelikely to provide the required servi
e. Extensive evaluation assesses the improvements inthe re
all rate and the in
reased e�
ien
y provided by the proposed sear
h s
heme.Chapter 5 
on
erns distributed task allo
ation, thus putting more fo
us on the 
on-sidered grid 
omputing s
enario. In this view, a review of existing s
heduling solutions ispresented. Subsequently our fully distributed meta-s
heduling proto
ol is introdu
ed andevaluated.



1.5. Stru
ture 7Chapter 6 reviews the proposed solutions in the 
ontext of the SmartGRID proje
t.In parti
ular, a prototype platform for the development and deployment of some of theaforementioned bio-inspired algorithms is presented and relevant details are demonstrated.Chapter 7 draws the 
on
lusions of this thesis, and summarizes the results and a
hieve-ments of the work presented in the pre
eding 
hapters. Moreover, food for thought andpointers for future resear
h based on the 
urrent work are provided.
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10 Chapter 2. Peer-to-Peer Systems
Peer-to-Peer systems refer to a distributed 
omputing paradigm that is built upon net-work ar
hite
tures where nodes a
t as both servers and 
onsumers. In 
ontrast, traditional
lient-server models exhibit a 
lear separation between nodes providing servi
es and thosemaking use of it.A network overlay is a logi
al topology maintained on top of another network, eithera physi
al one (built of wired or wireless 
ommuni
ation links) or a virtual one (anotheroverlay). Peer-to-Peer systems are typi
ally managed by appli
ation-level proto
ols thatdepend on the underlying network fa
ilities (su
h as TCP or UDP 
ommuni
ation): ea
hnode of the overlay needs to be able to 
ommuni
ate with possibly all other nodes, providedthat the end address is known.Peer-to-peer overlays are 
hara
terized by dire
t 
ommuni
ation between the parti
i-pating members, aimed at improving s
alability, fault-toleran
e and robustness 
omparedto 
entralized approa
hes. In 
ontrast to physi
al networks, 
onne
tions in an overlay arelogi
al, and depend on the ability of ea
h node to address 
ommuni
ation towards ar-bitrarily any other node by exploiting the routing 
apabilities of the underlying network.Physi
al and overlay networks 
an be abstra
ted to graphs, the topology of whi
h is de�nedby the (logi
al) 
onne
tions between the nodes. In this respe
t, an advantage of overlaynetworks over physi
al ones is the ability to easily modify or adapt the topology to meetuser-de�ned requirements.Nodes 
onne
ted to a parti
ular overlay may be referred to as a 
ommunity : nodeswithin the same 
ommunity typi
ally share some resour
es amongst ea
h other, su
h asservi
es or data. Building and maintaining su
h 
ommunities, namely providing me
ha-nisms to allow nodes to join the overlay and to 
onta
t other nodes, is a
hieved by meansof membership management proto
ols [285, 123℄. These proto
ols also aim at providingan e�
ient 
ommuni
ation 
hannel to spread information, to implement anonymous andse
ure 
ommuni
ation, or to over
ome 
ensorship barriers.The fo
us of peer-to-peer 
ommunities is to enable 
ollaboration amongst a large num-ber of systems and ease the sharing of information between them. A

ordingly, resear
h inthis �eld is 
on
erned with both the problem of maintaining an overlay as well as that of re-trieving information. This 
hapter fo
uses on both issues, as a review of existing solutions
annot negle
t the existen
e of a 
lose relation between overlay management and resour
edis
overy. More spe
i�
ally, while all peer-to-peer systems are 
hara
terized by their la
kof 
entral authority, di�erent peer-to-peer ar
hite
tures follow diverse design prin
iplesdepending on the strategies developed to retrieve information. An important step in theunderstanding of these systems is identifying the major di�eren
es between approa
hes,and highlighting their bene�ts and drawba
ks. We survey existing resear
h work aiming attra
ing the prin
iples of peer-to-peer systems and presenting some noteworthy solutions,restri
ting our dis
ussion to information storage and retrieval peer-to-peer system on a�xed network infrastru
ture. We thus omit topi
s su
h as overlays for streaming (P2PTV)[143, 190℄, voi
e 
ommuni
ation (VOIP) [11, 264℄, or mobile and ad-ho
 
ommuni
ation[228, 89℄. The purpose of this review is to brie�y highlight key design 
on
epts of existingsystems. A thorough analysis and taxonomy of the extensive literature available on thistopi
 is outside the s
ope of this thesis. Nonetheless, an in-depth analysis of the 
urrent



2.1. Graph theory fundamentals 11state-of-the art of peer-to-peer approa
hes is available in [58℄.The foundations for understanding the 
hara
teristi
s of an overlay network lie in theirmathemati
al properties. In this regard, an introdu
tion to graph theory 
on
epts thatwill be used throughout the rest of this thesis are presented in Se
tion 2.1. Our dis
ussionwill then fo
us on the stru
tural di�eren
es between existing solutions, with Se
tion 2.2 in-trodu
ing peer-to-peer information systems and highlighting the main di�eren
es between
urrent approa
hes, namely stru
tured and unstru
tured designs. An in-depth look ofstru
tured systems is provided in Se
tion 2.3, with a dis
ussion of noteworthy implementa-tions and a detailed review of the me
hanisms for storing and retrieving information in theoverlay. Conversely, Se
tion 2.4 presents unstru
tured solutions, while Se
tion 2.5 analyzesthe problem of 
hurn in peer-to-peer overlays. Se
tion 2.6 elaborates on the appli
ationof peer-to-peer te
hnologies in the �eld of grid resour
e dis
overy. Finally, this 
hapter
on
ludes in Se
tion 2.7, with a dis
ussion on �ndings that enables a better understandingof the goals and issues that are addressed by our solution.2.1 Graph theory fundamentalsThe 
hara
teristi
s of a 
omputer network 
an be analyzed by 
onsidering it as a dire
tedgraph. In this respe
t, to better understand the terms used throughout the rest of thisthesis, a brief but pre
ise de�nition is required. Further analysis on the topi
 
an be foundin [294℄.A graph is de�ned by a triple 〈V,E,→〉, where V is a set of verti
es, E a set of edges,and → a relation asso
iating two verti
es (
alled endpoints) and an edge. A graph 
an beused to represent 
omputer networks 
onsisting of nodes and un-dire
ted links: a

ordinglynodes are the verti
es, and links are the edges of the graph. Similarly, network overlays
an be mapped to graphs where edges are de�ned by logi
al 
onne
tions between nodes.For simpli
ity, in the rest we overlook the di�eren
es between the terms graph, network,topology, and overlay, and use either one of them inter
hangeably. In the same spirit, theterms node and vertex, as well as edge and link will also be used inter
hangeably.For a graph G = 〈V,E〉, we de�ne n ∈ G ⇔ n ∈ V . A node ni in a graph G = 〈V,E〉is adja
ent to another node nj if there exist an edge (ni, nj) ∈ E. The neighborhoodset Ni of node ni is the set of nodes adja
ent to ni, the size of of whi
h determines thedegree of a node. A graph is said to be undire
ted i� : ∀ni ∈ V : ∀nj ∈ Ni → ni ∈ Nj ,making the adja
en
y property 
ommutative; otherwise the graph is said to be dire
ted.In a 
omputer network we 
onsider a node ni as 
onne
ted to another node nj i� ni isadja
ent to nj , i.e. ni ∈ Nj ∧ nj ∈ Ni. Figure 2.1 illustrates an example graph where
V = {a, b, c, x, y}, E = {(b, a), (c, b), (b, x), (x, b), (c, y), (y, c)}. Arrow lines depi
t edges
onne
ting two endpoint verti
es, whereas double arrow lines indi
ate undire
ted links. Apath in G is a su

ession of nodes nk ∈ G, su
h that there exists a link between every nodein this su

ession.In a physi
al network, ea
h link is a physi
al 
onne
tion (either wired or wireless)between two nodes. In an overlay network, a (logi
al) link between two nodes exists ifboth have knowledge of ea
h other and an a
tive 
ommuni
ation takes pla
e. A graph
G is 
onne
ted if for ea
h pair of nodes ni, nj ∈ G, there exists at least a path between
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Figure 2.1: Example graphthem. Furthermore, a graph is said fully 
onne
ted if there exists a link between ea
h pairof nodes. Conversely, if a graph is not 
onne
ted, it is said to be partitioned.Several measurements are useful to des
ribe high-level properties of a graph. In thisregard the degree of a node is its number of neighbors; if the graph is dire
ted it is possible todistinguish between in-degree and out-degree, for links originating from a node, respe
tivelyending on a node. Related to the degree, important measures that help de�ning the
omplexity of a graph are the average degree, whi
h represents the mean degree a
ross allnodes, and the degree distribution, whi
h expresses the probability that a node has exa
tlya given number of neighbors.The e

entri
ity of a node n in a 
onne
ted graph G is the the greatest distan
e between

ni and any other node nj ∈ G. A

ordingly, the diameter of a graph G is the maximume

entri
ity of any node ni ∈ G, the radius is minimum e

entri
ity of all nodes ni ∈ G,while the average path length represents the average e

entri
ity.The 
lustering 
oe�
ient of a graph measures the degree to whi
h nodes share 
ommonneighbors. For a node ni with neighbors degree k, the lo
al 
lustering 
oe�
ient Ci is
omputed as the quotient of the number n of existing links between ni's neighbors and thenumber of all possible links between them (k(k−1)
2 ):

Ci =
2n

k(k − 1)The 
lustering 
oe�
ient C of a graph G is the average of the lo
al 
lustering 
oe�
ientsof all verti
es:
C =

1

|G|

∑

ni∈G

Cni
.In a so
ial network, the 
lustering 
oe�
ient is the probability that two friends of aperson are also mutual friends. Finally, the girth of a graph is the length of the shortest
y
le. If the graph does not 
ontain any 
y
les (for example, a tree graph), its girth isin�nite.2.2 Peer-to-peer information systemsThe main 
hallenge of peer-to-peer system is e�
ient information retrieval me
hanismsthat provide satisfa
tory results while being s
alable and 
onsuming a reasonable amountof bandwidth. We measure this level of satisfa
tion by 
omputing the hit rate (also known
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all rate), namely the ratio between retrieved results out of all possible ones. Be
auseretrieval queries typi
ally generate less tra�
 than a
tual 
ontent transfer, some peer-to-peer systems, su
h as Napster [9℄ and BitTorrent [1℄, implement dedi
ated 
entralizedindi
es and rely on peer-to-peer intera
tion only for data ex
hange. Centralized indexings
hemes are simpler to design and provide e�
ient (network tra�
-wise) sear
h, but 
reatesingle points of failure, as well as robustness and s
alability issues. On the other hand,pure peer-to-peer solutions remove the bottlene
k of 
entral servers, and make use of fullydistributed sear
h me
hanisms a
ross equipotent nodes at the expense of longer responsetimes. Moreover, fully de
entralized sear
h in pure peer-to-peer overlays involves an addi-tional trade-o� between the quality of results and the generated tra�
. As a 
onsequen
e,hybrid [300℄ (hierar
hi
al) solutions have been developed: some of the peers, typi
ally theones with greater 
omputing 
apabilities or better 
onne
tivity, are used to mediate re-quests of other peers and 
a
he information for later usage. Hybrid solutions re
ognizeand exploit the heterogeneity of many peer-to-peer networks, with great variations in the
apa
ity of ea
h peer (both in terms of 
omputational resour
es and 
onne
tivity).2.2.1 Classes of Peer-to-Peer SystemsBe
ause of the drawba
ks of 
entralized indexing ar
hite
tures, resear
h on peer-to-peersystems mainly fo
uses on pure and hybrid solutions. In this 
ontext, the 
hallenges raisedby the dynami
 and distributed nature of peer-to-peer systems has led to the developmentof di�erent solutions for both the membership management problem, and the data manage-ment one. Two main 
lasses are generally re
ognized [193, 58℄: stru
tured and unstru
turedoverlay networks. In the former there exists a tight relation between the information sharedon the overlay and the topology (stru
ture) of the overlay itself, while in the latter freedomis given in both the 
onstru
tion of the overlay as well as in the storage of the data.Stru
tured solutions 
an be 
ompared to a well maintained library, where books are
lassi�ed by topi
 and alphabeti
ally sorted. The lo
ation of a book 
an thus be pre
iselydetermined given that its title is known. While su
h pre
ise organization enables verye�
ient sear
h by title, it still fails to support more 
omplex queries, su
h as �All bookswith a butter�y on the 
over�. Moreover, an e�ort is required to keep order within thelibrary: when a new topi
 is added or a shelf is full, books may be moved from one shelfto another. Conversely, unstru
tured solutions 
an be 
ompared to a room with a lot ofbooks laid on the �oor: while sear
hing for a book by title be
omes more 
hallenging, noparti
ular 
are is required when adding or removing a book.Both approa
hes inherit the bene�ts of distributed systems su
h as fault resilien
eand a la
k of 
entralized 
ontrol, however they bear important di�eren
es that need to be
onsidered and dis
ussed. A

ordingly, the remainder of this 
hapter aims at reviewing themain 
hara
teristi
s of a number of stru
tured and unstru
tured systems, highlighting theiradvantages and weaknesses. Our goal is to identify the requirements, the open 
hallenges,as well as possible solutions that will drive the implementation of a novel peer-to-peeroverlay to support resour
e dis
overy in our grid validation s
enario.
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tured SolutionsStru
tured solutions, also known as Distributed Hash Tables (DHT), maintain topologiesusing deterministi
 algorithms in order to enable network e�
ient resour
e dis
overy andbounded delay performan
e. Contents shared by nodes are asso
iated with an identi�er,and all identi�ers are then asso
iated to nodes a

ording to spe
i�
 hash fun
tions. Thereis thus a strong 
orrelation between the 
ontent and the node that will store it. In orderto lo
ate 
ontent on the overlay, a lookup fun
tion is used to resolve the routing pathto the node asso
iated to the 
ontent's hash. A

ordingly, the query 
an be su

essfullyrouted through one or multiple steps to the node storing the 
ontent. In this se
tion severalexamples of DHT systems are presented and dis
ussed.2.3.1 ChordChord [269℄ assigns to ea
h node an identi�er of m bits within a 
ir
ular spa
e of size 2m,so that the network is organized as a logi
al ring. Nodes know their su

essor in the ring,i.e. the node whose identi�er follows in the identi�ers' spa
e. Content shared by nodes isalso assigned an identi�er (or key), whi
h is typi
ally a hash of the 
ontent's data, modulo
m bits, generated using a 
onsistent hashing fun
tion [169℄. Consistent hashing fun
tionsensure that adding or removing bu
kets in the table does not signi�
antly 
on
ern theremaining ones; in this 
ontext, their use minimizes the number of nodes and keys a�e
tedby the addition or removal of a node (i.e. a bu
ket in the DHT), and helps spreading keysevenly a
ross available nodes. A keyK is published on the node referred to as successor(K)whose identi�er mat
hes K or follows it. K su

essor(K)0 (000) N1 (001)1 (001) N1 (001)2 (010) N2 (010)3 (011) N3 (011)4 (100) N4 (100)5 (101) N6 (110)6 (110) N6 (110)7 (111) N7 (111)Figure 2.2: Example Chord ring (m=3)Figure 2.2 illustrates an example of a ring topology with m = 3: not all of the 23 = 8available identi�ers are allo
ated to nodes. For all possible keys that 
an be mapped onthe ring, the values for successor(K) (i.e. the node to whi
h a key K is assigned) areindi
ated. Keys 0 (000) and 5 (101) are assigned to nodes N1 (001), respe
tively N6 (110)be
ause a node, the key of whi
h exa
tly mat
hes them, does not exist in the overlay.To speed up the lookup operation, ea
h node n maintains a routing table (
alled �ngertable) of size m that 
ontains the identi�ers of other peers in the ring: the entry at the
ith position (1 ≤ i ≤ m) in the �nger table 
orresponds to the �rst node that su

eeds n
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tured Solutions 15by at least 2i−1 hops in the ring, i.e. successor(s) with s = n + 2i−1. Table 2.1 lists the
ontents of the �nger table 
orresponding to node N3.
i s successor(s)1 3 + 20 = 4 N42 3 + 21 = 5 N63 3 + 22 = 7 N7Table 2.1: Example Chord �nger table for N3Lookup pro
edure In order to �nd successor(K) in the overlay, either to build up the�nger table or to lookup for a key, a node starts by querying known nodes starting fromthe one that appears 
loser to K, and repeats the pro
ess until the target peer has beenfound. The routing 
ost in a Chord overlay of N peers is of O(logN) hops.Joining and leaving A node joins the overlay by 
onta
ting one of the existing peersand �nding its position in the ring by querying for the key asso
iated with its identi�er.When a node joins the overlay or leaves the system, the su

essors pointer and �ngertables of nearby nodes in the ring need to be updated. Chord solves this by periodi
allyexe
uting a stabilization pro
edure on ea
h node to rearrange keys and update the �ngertable. To provide resilien
e in the event of su

essor's 
rash, ea
h node maintains a list ofnodes that su

eed it in the ring: if a su

essor fails to respond to a query, one of the knownba
kup su

essors is 
onta
ted. The 
ost of node join or leave is O(log2N) messages.Further resear
h A number of appli
ations use Chord as the underlying peer-to-peeroverlay. Notable examples are the Cooperative File System (CFS) [88℄ whi
h employsa Chord overlay to lo
ate data blo
ks on servers, proje
t SpoVNet [43℄ whi
h aims at
reating a 
ommuni
ation infrastru
ture over heterogeneous te
hnologies and uses Chordto implement its routing s
heme, and a Chord based DNS servi
e [82℄. Additionally,a self organized approa
h, named Self-Chord [113℄, proposes the use of bio-inspiredmobile agents on a Chord overlay to self-organize keys by 
lustering them on nodes. Theoverlay is 
onstru
ted and maintained as in Chord, but 
ontent's keys and node's keys areindependent, as there is no need to assign a key to a pre
isely spe
i�ed peer. Data is insteadgrouped into di�erent 
lasses, with ea
h element in the same 
lass sharing the same keyvalue. Mobile agents reorganize the keys in the overlay using a 
lustering approa
h similarto [114℄. Ea
h node 
omputes an average value 
alled 
entroid based on the numeri
al valueof the stored keys: agents move keys on the overlay in order to minimize the distan
e ofea
h key to the 
entroid of the 
urrent node. Routing of queries is based on an estimationof the key distribution over the overlay that allows for jumping to nodes that are 
lose tothe target.2.3.2 KoordeKoorde [166℄ builds on the prin
iples of Chord by using a ring topology augmentedwith de Bruijn graphs [57℄ links instead of a �nger table. De Bruijn graphs are 
omposed



16 Chapter 2. Peer-to-Peer Systemsof 2b nodes, for a given number of bits b, where ea
h node is assigned one of the avail-able numeri
al values in [0, 2b[. Ea
h node m is 
onne
ted with nodes 2m mod 2b and
(2m + 1) mod 2b.Lookup pro
edure To route a message from x to y in a de Brujin graph ea
h hopis resolved by progressively repla
ing x's low-order bits with y's high-order ones, i.e. byshifting x to the left and introdu
ing y's high-order bits on the right. For example, inthe de Bruijn graph shown in Figure 2.3, to route a message from node 110 to 001, thesequen
e of traversed nodes is 110→ 100→ 000→ 001.

Figure 2.3: Example de Bruijn graph for b = 3. The highlighted links illustrate the routingpath from node 110 to 001.Be
ause in a real network not all available identi�ers 2b are used (typi
ally b = 160),Koorde uses an adaptation of a de Bruijn graph to over
ome the problem of missing(imaginary) nodes: ea
h node m is 
onne
ted with both the �rst node su

eeding it on thering, and the �rst existing prede
essor of 2m mod 2b. Figure 2.4 shows a simple Koordetopology with b = 3, detailing the short
uts employed by ea
h node. To provide faulttoleran
e in the event of a node failure, not only the �rst prede
essor of 2m mod 2b isknown, but also the O(logN) prede
essors of it.To route a message in the overlay, the previously des
ribed routing algorithm is adaptedto support imaginary nodes by 
omputing hops through them. A

ordingly, in a Ko-orde network with N nodes with a node degree of O(log(N)), it is possible to a
hieve
O(log(N)/loglog(N)) hops routing.Joining and leaving Be
ause of the similarity between Koorde and Chord, the for-mer uses the same pro
edures for joining the overlay, maintaining proper 
onne
tivity andre
overing after abrupt dis
onne
tions by means of a stabilization pro
ess.2.3.3 PastryPastry [246℄ is a distributed peer-to-peer overlay infrastru
ture that bears similaritiesto Plaxton meshes [223℄ and makes use of pre�x routing [28℄. Nodes are assigned random
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tured Solutions 17node s = 2m mod 2b predecessor(s)000 000 111001 010 001010 100 011011 110 100100 000 111101 010 010110 100 011111 110 100Figure 2.4: Example Koorde overlay for b = 3. Values in itali
 in the table representimaginary de Bruijn neighbors that do not exist in the overlay.unique identi�ers of length k bits (k = 128) that map uniformly into a 
ir
ular spa
e of size
2k; nodes 
an simultaneously a
t as servers (storing obje
ts), routers (addressing in
omingmessages to the next hop in the overlay), or 
lients (initiating lookups). Content sharedin the network is assigned a key in the same namespa
e as node identi�ers, meaning thata lookup operation is equivalent to routing a message towards a node.Lookup pro
edure For the routing pro
ess, node and 
ontent identi�ers are interpretedas digits with base 2b, where b is a user-de�ned parameter typi
ally set to 4. This valuedetermines both the amount of information stored by ea
h node, as well as the performan
eof the routing pro
ess: for an overlay of N peers, the routing algorithm is typi
ally ableto deliver a message to a destination in less than O(log2bN) steps. The routing pro
essitself makes use of the node's identi�er or the 
ontent's key to forward in
oming messagesto the node the identi�er of whi
h is numeri
ally 
loser to the target. More spe
i�
ally, atea
h routing step, the message is forwarded to a known node whose identi�er shares withthe target a pre�x that is at least one digit longer than the pre�x that the target shareswith the 
urrent node's identi�er. If no su
h node is known, the message is forwarded toa node whose identi�er shares a pre�x with the key as long as the 
urrent node, but isnumeri
ally 
loser to the key than the 
urrent node's identi�er.To support routing, nodes have to maintain several data stru
tures that a
tively 
om-pose their node state: a routing table, a neighborhood set, and a leaf set. The routing table
ontains log2bN rows, with 2b−1 entries ea
h; for every node X, ea
h entry in row n of thelo
al routing table is a pointer (i.e. IP address) to a node whose identi�er shares the �rst
n digits (pre�x of length n) with the identi�er of X, but di�ers at least in the (n + 1)thdigit. The neighborhood set 
ontains the addresses and identi�ers of nodes that are in theproximity of X, and it is used to ensure that a message is forwarded to nodes with minimaldistan
es. The leaf set is divided into two subsets, in order to store referen
es to nodes theidenti�ers of whi
h are either numeri
ally larger, or smaller than that of the 
urrent node.An example of the state of a node is illustrated in Figure 2.5.When a message is re
eived, a node 
he
ks whether the identi�er is within the boundsof the leaf set. If this is the 
ase, the message is forwarded to the node in the leaf set theidenti�er of whi
h has the minimal distan
e to the key in the message. Otherwise, the



18 Chapter 2. Peer-to-Peer SystemsRouting tablerow entries0 0212 ⋆ 2233 33221 1012 1131 ⋆ 13332 1203 1211 1223 ⋆3 1230 1231 ⋆ 1233
Leaf setsmaller larger1211 13211132 13121111 13331200 1321

NeighborhoodSet1231112213221002Figure 2.5: Example Pastry node state for node 1232 (b = 2, and key size redu
ed to 8bits for simpli
ity). Underlined text in the routing table highlights the pre�x shared withthe 1232 identi�er, respe
tively bold the non-mat
hing digits.routing table is 
onsulted and the message is forwarded to a node that shares a 
ommonpre�x with the message's key by at least one more digit.Joining and leaving A node Y 
an join the overlay by sending a spe
ial join messageto a node within the overlay; the key of this message is the randomly generated identi�erof Y . The join request is routed as a lookup request, and ea
h traversed node sends itsstate to Y so that the latter 
an �ll up its own data stru
tures. More spe
i�
ally, to �ll therouting table, node Y will 
opy row n with the entries at row n from the node traversedat step n.Pastry nodes keep tra
k of failed peers by means of heartbeat monitors and by de-te
ting failures when forwarding messages. When a failed node is dis
overed, a re
overypro
edure is initiated by its neighbors in order to restore their state.Further resear
h Pastry is used to manage the overlay in S
ribe [64℄, a de
entralizedmulti
ast infrastru
ture: links between nodes are used to 
reate multi
ast trees that enablee�
ient dissemination of messages. Furthermore, SplitStream [67℄ builds on S
ribe toprovide e�
ient high-bandwidth 
ontent distribution. Another proje
t, PAST [100℄, im-plements a distributed storage solution with support for repli
ation and load-balan
ing.Finally, Squirrel [155℄ implements a distributed web 
a
he shared amongst a large num-ber of ma
hines.2.3.4 TapestryTapestry [309℄ (now 
alled Chimera) uses a similar approa
h to Pastry, but also dealswith repli
ation by means of multiple roots for ea
h obje
t. Tapestry uses a variation ofPlaxton meshes where ea
h peer is assigned a 160 bit identi�er represented by a k digit keywith base b. Nodes maintain a routing table that is used to forward messages by means ofa pre�x routing algorithm. The routing table is organized into rows with multiple levels:entries at the ith row, jth level, point to the 
losest nodes that share with X a 
ommonpre�x of exa
tly j − 1 digits, and whose jth digit is equal to X's jth digit plus 1. Figure2.6 illustrates the routing table of an example Tapestry node with a digit identi�er equalto 1232 (b = 2). To in
rease the resilien
e of the network, multiple referen
es are kept forthe same entry in the table. Nodes 
an publish new data in the DHT by determining thenode that the 
ontent should be assigned to, and whi
h will be referred to as the root of
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tured Solutions 19the obje
t. To a
hieve this, a lookup query with the identi�er of the 
ontent is started.To improve both resilien
e and the lookup performan
e, ea
h node along the routing pathalso stores a referen
e to the node where the request originated. Nodes that have shared
ontents in the overlay periodi
ally renew their submissions by repeating the publi
ationpro
ess. Routing tablerow ↓ / level → 1 2 3 41 2⋆ ⋆ ⋆ 13⋆⋆ 120⋆ 12332 3⋆ ⋆ ⋆ 10⋆⋆ 121⋆ 12303 0⋆ ⋆ ⋆ 11⋆⋆ 122⋆ 1231Figure 2.6: Example Tapestry routing table for node 1232 (b = 2, and key size redu
ed to
8 bits for simpli
ity). Underlined text in the routing table highlights the pre�x shared withthe 1232 identi�er, respe
tively bold numbers the non-mat
hing digits. Entries 
ontainaddresses of multiple nodes mat
hing the given pattern: for example, entry 11⋆⋆ may
ontain the pointers to 1123, 1102, et
.Lookup pro
edure Tapestry lookup pro
edure uses a longest pre�x mat
hing routingalgorithm. At ea
h step nodes look in the table for the 
losest known node for the requestedidenti�er: the message is progressively forwarded toward the node that is responsible forthe 
ontent's key. Thanks to repli
ation along the routing path, requests are most likelyful�lled before rea
hing the obje
t's root, with the upper bound for number of hops beingequal to O(log(N)).Joining and leaving Nodes join at a position determined by a lookup of their ownidenti�er in the network. The in
oming node intera
ts with nodes on the routing path toretrieve information used to �ll up the neighbors map. To �nish the join pro
ess, nodesupdate their shared keys with adja
ent peers. Finally, heartbeat messages are used todete
t abrupt dis
onne
tions and ensure reliable operation of the overlay.Further resear
h O
eanstore [180℄ is a storage solution originally built on Tapestry(now based on Bamboo [237℄) that provides se
ure ar
hiving on an overlay of untrustedservers. Another notable proje
t that exploits a Tapestry overlay is Bayeux [312℄, whi
himplements a multi
ast infrastru
ture.2.3.5 Vi
eroyVi
eroy [197℄ uses 
onne
ted rings and an approximation of a butter�y network, whilethe mapping between 
ontent's keys and nodes resembles the prin
iples of Chord. Anoverlay of N peers is divided into log(N) levels, with ea
h level organized as a ring; allnodes are also 
onne
ted in a global ring. Ea
h node is assigned an identity that maps itsdis
rete identi�er to a real identi�er in the [0, 1] interval, and is randomly assigned to alevel l. Beside from 
onne
tions with its prede
essor and su

essor in the 
orrespondingring, ea
h peer is provided with additional 
onne
tions to other nodes. In parti
ular, �ve
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onta
ts are 
reated with peers lo
ated in di�erent levels. A node with identity
n in level l has 
onne
tions with two peers at level l+1 (down links to a node in level l+1at a distan
e of 1/2l, i.e. a node at level l+1 with identity at least n+1/2l), one at shortdistan
e, one at long distan
e, and one 
onne
tion with a peer at level l − 1 (up link to a
lose-by node).Lookup pro
edure To lo
ate an item in the overlay, nodes forward the request followingtheir up link until the identi�er of the 
onta
ted node is lower than the item's key. Then,either ring or down links are used to 
ontinue routing up until the item has been found.As an example, 
onsider the simple Vi
eroy overlay depi
ted in Figure 2.7. To route amessage from node 7 to node 10, the forwarding path is: 7→ 6 (up link)→ 5 (up link)→
10 (down right link). The routing pro
ess in an overlay of N nodes requires O(log(N))hops.Joining and leaving Nodes have to sele
t a level to 
onne
t to, and thus need anestimate of the size of the overlay. Instead of implementing a 
ostly network size estimationalgorithm, a node s estimates the size of the network as N ′ = 1/distance(s, successor(s))(where successor(s) is the su

essor in global ring). Node s sele
ts its level uniformlyat random in the interval [1, N ′], and then 
onta
ts its su

essor in the ring of that levelto 
omplete the join pro
ess. When a node leaves, the remaining nodes reorganize their
onne
tions a

ordingly.

Figure 2.7: Example Vi
eroy network with 16 nodes. Dotted lines indi
ate the mappingbetween dis
rete identi�ers and the real ones (identity) in the interval [0, 1]. Up links areomitted for simpli
ity.



2.3. Stru
tured Solutions 212.3.6 CANThe Content Addressable Network (CAN) [234℄ assigns to ea
h node (and 
ontent'skey) a portion of a d-dimensional toroidal key spa
e (Figure 2.8). Keys for both nodes and
ontents are generated by means of a uniform hash fun
tions that maps to a point in thespa
e. Ea
h peer stores the keys lying within its region; moreover, for every dimension,nodes are aware of 
lose-by peers managing neighbor regions.

Figure 2.8: Example CAN 2-dimensional spa
e with 12 nodesLookup pro
edure To lookup for a key, the hash fun
tion is applied to determine theasso
iated point in the key spa
e. Lookup messages are progressively forwarded, using agreedy routing algorithm, to nodes that are 
loser to the zone 
ontaining the point. Theaverage path length in an overlay of size N with a uniform distribution of the keys in ddimensions is O((d/4)/(N
1

d )).Joining and leaving To join the overlay, a node sele
ts one of the existing peers andsends its request. The zone managed by the latter is split between the peers, and key-valuepairs lying in the joining node's zone are transferred. Information about neighbor peersis fet
hed by the in
oming node and all involved nodes in adja
ent zones are 
onta
tedto update their neighbors' sets. A node that leaves the overlay will hand over the keysto a neighbor. To dete
t abrupt dis
onne
tions, nodes periodi
ally ex
hange heartbeatswith their neighborhood: if a failure is dete
ted, 
lose-by peers 
oordinate to assign theidenti�ers left over by the leaving node to the remaining peer that is 
urrently responsiblefor the adja
ent zone of smallest size.Further resear
h The work presented in [299℄, extends CAN overlays with additionalshort
ut paths, or expressways, that enable logarithmi
 routing and redu
e laten
y. In asimilar way, [274℄ augments a CAN overlay with long links to 
reate a small-world network.



22 Chapter 2. Peer-to-Peer Systems2.3.7 KademliaKademlia [203℄ assigns to ea
h peer and to ea
h resour
e 160 bits key identi�ers. Contentkeys are stored on nodes the identi�er of whi
h is 
lose to the key by using a bitwise XORmetri
. Ea
h node maintains a list of log(N) bu
kets, ea
h of whi
h 
ontains k entries thatrefer to other nodes in the overlay. Entries in the ith bu
ket refer to peers at a distan
ebetween [2i, 2i+1[. When for some key-value pair a node that is 
loser is dete
ted, thepair is repli
ated instead of moved to improve fault toleran
e; for the same reason, nodesperiodi
ally re-insert referen
es to shared obje
ts in the overlay.Lookup pro
edure To route a message, peers 
ompute the XOR distan
e ⊕ betweentheir identi�er and the destination, and use it to retrieve information from the bu
ketstable: entries in the 
orresponding bu
ket are used to forward the request. In 
ontrast toother DHT approa
hes, during a lookup Kademlia peers start parallel requests to otherpeers; moreover, peers ex
hange routing information during ea
h lookup. This behaviorminimizes the need for a separate ex
hange of information between peers.Bu
ket table for 011 (N3)row range entries0 [20 . . . 21[ 010 (N2)1 [21 . . . 22[ 001 (N1)2 [22 . . . 23[ 100 (N4), 101 (N5)Bu
ket table for 101 (N5)row range entries0 [20 . . . 21[ 001 (N4)1 [21 . . . 22[ 110 (N6), 111 (N7)2 [22 . . . 23[ 010 (N2), 011 (N3)Figure 2.9: Example Kademlia overlay with 8 nodes and sample bu
ket tables for nodes
011 (N3) and 101 (N5).Figure 2.9 illustrates a simple Kademlia overlay with 8 nodes (N0. . .N7), and the
ontents of the bu
ket table of nodes 011 and 101. To route a message from 011 (N3) to
111 (N7), N3 
omputes the XOR distan
e 011 ⊕ 111 = 100, and looks for entries in itstable in the range distan
e of 4. Be
ause 111 is not found, nodes 100 (N4) and 101 (N5)will be queried in parallel. Hopefully, N5 
an return the address of 111, N7, so that N3
an su

essfully send its message as well as update its bu
ket table.Joining and leaving To join the overlay, a node x 
onta
ts one of the existing nodes
y and inserts it into the appropriate bu
ket. Su

essively, a node lookup is started on xto sear
h for the key x: be
ause y is the only available neighbor, x will start ex
hangingneighbors with it and thus gain knowledge of additional peers in the overlay. Liveness ofnodes is monitored by 
he
king the in
oming messages and the su

essfulness of outgoingrequests: referen
es to nodes that stop 
ommuni
ating in the bu
ket table are removedfollowing a least re
ently seen evi
tion algorithm.
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tured Solutions 23Further resear
h Kademlia is 
urrently employed by several P2P �le sharing [13℄ and
ontent distribution [122, 12℄ ar
hite
tures to support e�
ient keyword sear
h.2.3.8 SkipNetSkipNet [140℄ uses a distributed approximation of skip lists [226℄ to implement a DHTwith lo
ality properties (a feature typi
ally negle
ted in other systems). A skip list isa data stru
ture 
omposed of multiple levels of linked lists: at the base level all nodesof the list are present, at higher levels pointers enable to skip over elements at di�erentgranularity. SkipNet allows for 
ontrol of the lo
ation where the data is stored in theoverlay, thus in
reasing availability and se
urity. Nodes are referen
ed by their uniquename identi�er. Instead of using a list, the overlay is organized as a double-linked orderedring of N nodes; ea
h node stores a routing table 
ontaining 2log(N) pointers organizedas log(N) levels with 2 entries ea
h. Referen
es at higher levels enable longer jumps (orskips) in the overlay. Pointers at level h in the table refer to nodes that are approximately
2h hops to the left and right in the base ring. Instead of using a pre
ise distan
e measure,these nodes are determined by splitting the ring at the lower level and probabilisti
allyassigning nodes to the resulting rings. Figure 2.10 illustrates the resulting levels and ringsin an example SkipNet 
omposed of 8 nodes. At ea
h level, nodes are ordered by theirname identi�er in their 
orresponding ring. The latter determines the numeri
al identi�erof the node, so that ea
h node in a ring at level b shares the same high-order b bits of thenumeri
al identi�er. Routing table N3Level Left Right0 N2 N41 N1 N52 N7 N7Figure 2.10: Example SkipNet infrastru
ture and routing table for node N3.Lookup pro
edure SkipNet supports both routing by the name identi�er or by thenumeri
al identi�er. To route a message by name, a node �rst 
he
ks the name identi�erto see if the message has to be forwarded left or right a

ording to the shared pre�x. Ifthe message and the node identi�er share no 
ommon pre�x, a random dire
tion is 
hosen.Subsequently, at ea
h hop, nodes forward the message to the farthest node whose identi�eris not greater than the destination, by s
anning the routing table starting from the highestlevel. In the example overlay shown in Figure 2.10, a message from N3 to N6 is forwardedto the left and to a referen
ed node at level 1, namely N5. To route a message by numeri
alidenti�er, the algorithm begins by looking for a node in level 0 whose numeri
al identi�er's�rst digit mat
hes the target's numeri
 identi�er �rst digit. The algorithm then moves tothe node's ring of level 1, and repeats the sear
h by looking at the se
ond digit. After a�nite number of steps, the destination is found.



24 Chapter 2. Peer-to-Peer SystemsJoining and leaving When a node joins the overlay, it �rst needs to �nd the top-levelring that 
orresponds to its numeri
 identi�er. This is a
hieved by routing a message tothat numeri
 identi�er. From this point on, the node retrieves its neighbors in the ringand in lower level rings by similarly looking for its name identi�er. When a node leavesonly the ring links at level 0 have to be repaired: this is performed by a repair pro
ess runeither upon noti�
ation of the leaving node itself, or as soon as the departure has beendete
ted by its neighbors.2.3.9 P-GridP-Grid [14℄ builds upon a binary pre�x tree (also known as trie) and uses pre�x mat
hingto resolve queries. Ea
h peer is asso
iated with a leaf in the tree, and is responsible fora set of keys 
omposing its key spa
e partition. The pre�x of a binary representation ofthe data managed by a peer p determines its position in the tree, i.e. its path π(p). In
ontrast to hierar
hi
al solutions, the tree stru
ture is not re�e
ted in the a
tual topology
onne
ting the peers. A

ordingly, nodes have to maintain routing tables that point tonodes managing di�erent subtrees thus di�erent zones of the key spa
e, and update themusing an epidemi
 proto
ol. More spe
i�
ally, ea
h peer p stores referen
es to other peerssharing a 
ommon path pre�x of length l with p, but with the last bit inverted. Toenable e�
ient range queries, 
ontent's keys are 
omputed using an order-preserving hashfun
tion. Routing table Al Pre�x Node0 1 E1 01 BFigure 2.11: Example P-Grid and routing table for node A (π(A) = 000). A
tual linksare not determined by the stru
ture of the binary tree but by the 
ontents of ea
h node'srouting table.An example of P-Grid is depi
ted in Figure 2.11: the key subspa
e is divided a
rosspeers a

ording to the keys' pre�x. Node A manages the 00 pre�x, nodes B and C bothmanage the 01 path to in
rease fault-toleran
e, node D is responsible for 10, while nodes
E and F store data with pre�x 11. The illustrated routing table of node A 
ontainsreferen
es to node E (with path 11, sharing no 
ommon pre�x with π(A)), and B (withpath 01 sharing a 
ommon pre�x of length 1 with π(A)).Lookup pro
edure To look up a key in the overlay a node �rst 
he
ks whether its pathis in
luded within the key bit string. In this 
ase, the key is stored within the peer andthe asso
iated 
ontents 
an be returned. Otherwise, the routing table is 
onsulted and therequest is forwarded to a node whose path better mat
hes the key's pre�x. The expe
ted
ost for a lookup operation is O(log(N).Joining and leaving When a peer 
onne
ts to the overlay, the key spa
e is divided andshared with the in
oming peer. If two peers are responsible for the same partition of the
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tured Solutions 25key spa
e (i.e. they have the same path) they ex
hange referen
es; if only a pre�x of thepath is shared, the peer with the shorter key path extends its key by taking over some ofthe keys.2.3.10 Other approa
hesBeside the systems presented in the previos subse
tion, we brie�y review here other notableexamples of stru
tured overlays.HyperCuP [251℄ employs a hyper
ube graph and guarantees that nodes are visitedexa
tly on
e during a lookup operation (i.e. there is no retransmission of messages).Be
ause HyperCuP merely proposes an overlay stru
ture for e�
ient broad
ast, it is not
on
erned with allo
ating data to nodes or routing requests to parti
ular nodes as in aDHT. In this respe
t, e�
ient broad
asting in an overlay of N nodes 
an be a
hieved with
N − 1 message forwards. An extension of the proto
ol that uses semanti
 data to routemessages and redu
e network overhead is presented in [244℄.Cy
loid [261℄ employs a d-dimensional hyper
ube that forms a 
ube-
onne
ted 
y
le(CCC) [225℄ stru
ture where ea
h vertex is a 
y
le of d nodes. In 
omparison to othersolutions, ea
h Cy
loid node has a small and 
onstant degree in that it maintains exa
tlythree 
onne
tions: two 
y
li
 
onne
tions and one 
ubi
al 
onne
tion. This redu
es main-tenan
e 
osts in highly dynami
 systems. An improvement over Cy
loid that 
ombinesthe CCC stru
ture with a folded hyper
ube is presented in [187℄.Kelips [137℄ divides nodes into k a�nity groups (0. . . k − 1). Ea
h node maintainsreferen
es to nodes in its a�nity group, in other a�nity groups, and referen
es to �lesshared by other nodes. This information is updated by means of periodi
ally gossipingpartial state information. In 
ontrast to other stru
tured approa
hes, Kelips is simpler,be
ause there is no stri
t underlying topology (ring, hyper
ube, et
.) to be maintained.Lookup requests are progressively forwarded toward nodes that are 
loser to the target.Kelips has been used to implement a web 
a
hing me
hanism, namely Ka
he [191℄.Symphony [198℄ uses a ring stru
ture mapping nodes onto the key spa
e (like Chord).Nodes maintain a link to their su

essor and prede
essor in the ring, and a number oflong distan
e ring short
uts. Short
uts are 
hosen randomly a

ording to a harmoni
distribution, whi
h results in large jumps in systems with few nodes, and short jumps inlarger systems. The 
hara
teristi
s of the overlay re�e
t the small world phenomenon [206℄(refer to Se
tion 2.4.1), and its 
onstru
tion is based on the method proposed in [174℄.2.3.11 Multi-attribute, range, and semanti
 queriesDistributed Hash Tables are very e�
ient in mat
hing lookup queries, by �nding the valueunivo
ally asso
iated with a given key. A number of appli
ations nonetheless depend onrange or multi-attribute queries that look up for values that lie in an interval between twokeys or are the union of di�erent attributes. For example, in a distributed database of
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al data, typi
al queries may involve �nding all points within a distan
e of 100mfrom a given lo
ation. A possible solution to this problem is to divide the interval to beretrieved into a dis
rete number of points and initiate a query for ea
h of those points.This nonetheless involves a trade-o� between the e�
ien
y of a sear
h operation and thegranularity of the results.To support range sear
hes in a Chord-like overlay, Chord# [255℄, repla
es 
onsistenthashing with an order-preserving hashing. An order preserving hash fun
tion h ensuresthat if a < b, then h(a) < h(b); range queries 
an thus be resolved by �rst lo
ating nodesstoring the values of a and b in the overlay, and then visiting all nodes between them. Arouting s
heme, named SONAR, that adds support for multi-dimensional range queries ispresented in [254℄. Other solutions enabling range-queries in Chord are MAAN (Multi-Attribute Addressable Network) [60℄ and [138℄, whi
h employ a lo
ality sensitive hashing(LSH) [154℄ fun
tion to map similar data to nearby identi�ers with high probability.The work presented in [24℄ proposes an extension of CAN that enables e�
ient rangequeries for a grid middleware. The presented approa
h uses a spa
e �lling 
urve [247℄(namely a Hilbert 
urve) as hash fun
tion: ea
h peer is responsible for a subinterval of thedomain [0, 1], whi
h represents the admissible attribute values that 
an be stored in theDHT. A range lookup �rst lo
ates the zone 
ontaining the middle point of the requestedinterval, and then propagates the request to 
lose-by zones until all points in the intervalhave been found.As des
ribed in [235℄, pre�x hash tries (PHT) 
an be adapted to address range queries;this te
hnique has been su

essfully implemented inP-Grid by means of an order-preservinghash fun
tion to generate 
ontent's keys [90℄. Skip graph based stru
tures have also provedto be a viable solution for both range and multi-dimensional queries: beside the previously
ited SkipNet [140℄, examples in
lude SkipIndex [308℄ and Skip Tree Graph [132℄.Mer
ury [39℄ implements a query routing me
hanism that supports multi-attributeand range requests. Nodes are grouped into hubs that 
luster all the data related to a
ertain attribute, and queries are routed toward the hubs responsible for their 
ontents.Furthermore, a ring topology is used to 
onne
t nodes within hubs, enabling e�
ient rangequery resolution.Other solutions that enable range and/or multi-dimensional queries in DHTs are: [218℄,implementing range-queries over the Bamboo DHT [237℄, [34℄, presenting an extensionof Pastry to supports range queries, [168℄, extending Chord with support for rangequeries and load balan
ing, [91℄, proposing a re
ursive partition sear
h method, [186℄,des
ribing a distributed sear
h s
heme supporting both range and multi-attribute queries,and [192℄, introdu
ing support for multi-dimensional 
omplex queries by means of R*-trees[35℄. Finally, a 
omparative analysis of 
ommon DHTs with support for multi-attributeand range sear
h systems is presented in [260℄.Semanti
 queries 
an be viewed as a natural extension of multi-attribute and rangequeries. A notable drawba
k of the latter is the la
k of a notion of semanti
 similarity,thus words like 
ar and vehi
le are not 
onsidered as related. In [277℄ two solutions forsemanti
-based full-text sear
hes based on CAN are proposed, employing ve
tor spa
emodel (VSM) and latent semanti
 indexing (LSI). Do
uments are organized so that re-lated do
uments are stored 
loser in the key spa
e. In the VSM solution, ea
h node isresponsible for storing referen
es to 
ertain keywords, thus a do
ument retrieval operation
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tured solutions 27is de
omposed into several lookups for ea
h of the sear
h terms. In the LSI solution, thesemanti
 ve
tor is mapped into 
oordinates in the CAN spa
e: do
ument retrieval �rstlo
ates the 
orresponding point, and then multi
asts the request to (semanti
ally) nearbynodes. Another solution [59℄ extendsMAAN [60℄ to support RDF1 meta-data storage andretrieval.2.4 Unstru
tured solutionsUnstru
tured systems are not based on deterministi
 overlay topologies and do not enfor
epre
ise rules on the pla
ement of data in the overlay. A

ordingly, the information sharedby nodes and the logi
al 
onne
tions between them are unrelated. To some degree, unstru
-tured systems are freely 
onne
ted overlays that mimi
 so
ial relationships between peers,and where information retrieval relies on multi
ast 
ommuni
ation. While less e�
ientthan DHTs, unstru
tured solutions are simpler to maintain and allow for more 
omplexqueries su
h as free text sear
h. Be
ause unstru
tured peer-to-peer topologies are not 
re-ated and maintained by a deterministi
 pro
ess, it is often di�
ult to understand theirdynami
s in order to enable e�
ient 
ommuni
ation and robust operation. Nonetheless,resear
h has 
ome up with models that repli
ate the 
hara
teristi
s observed in real-world
omplex networks and enable a deeper understanding of their features. A

ordingly, beforereviewing existing peer-to-peer solutions, we brie�y present 
ommon models of 
omplexnetworks; an in depth dis
ussion on 
omplex networks 
hara
teristi
s 
an be found in [87℄.2.4.1 Complex network topologiesUnstru
tured networks are examples of 
omplex networks where there is no apparent stru
-ture. While we refer to unstru
tured solutions as overlays 
onstru
ted without relying on adeterministi
 algorithm, there exists some degree of 
ontrol over the desired 
hara
teristi
sof the resulting topology. Thus, while it might not be possible to re
ognize regular patternsin the underlying graph, a 
oarse 
lassi�
ation of unstru
tured topologies based on mainfeatures is nonetheless possible. The graph's degree distribution is one of su
h features,and it is the prin
ipal measure of analysis of 
omplex networks.Random graphs (Erdös-Rényi) Random networks [265, 105℄ 
an be 
onsidered as thesimplest example of 
omplex networks [87℄. A generative model for 
onstru
ting randomnetworks by 
onne
ting all pair of nodes with uniform random probability has been in-trodu
ed by Erdös and Rényi [105℄. Random graphs exhibit small diameters [45, 46℄ (oflogarithmi
 or polylogarithmi
 growth), and node degrees following a binomial distribution[19, 156℄. Whereas initial studies on random networks aimed at developing mathemati
almodels for studying real world phenomenons, it was later proved that most real-word net-works 
annot be satisfa
torily represented by the Erdös-Rényi model. The major issuesare related to the di�erent degree distribution and smaller 
lustering 
oe�
ients to what
an be observed in real networks. Resear
h showed that it is nonetheless possible to al-gorithmi
ally 
reate models mat
hing or approximating real networks degree distributions1http://www.w3.org/RDF



28 Chapter 2. Peer-to-Peer Systems[216℄ by employing di�erent probability distributions [214℄ or 
onstru
tion models basedon rewiring methods [208℄.Small world networks (Watts-Strogatz) The �small-world phenomenon� [31℄ was�rst observed by Stanley Milgram during his so
ial studies in the 1960's [206℄. By meansof a simple experiment, it was shown that people are typi
ally linked by short 
hains ofa
quaintan
es; that observation gave birth to the myth of �six degrees of separation" [293℄.Beside short average path lengths, small world networks are 
hara
terized by high 
onne
-tivity within small group of nodes (high 
lustering 
oe�
ient). In parti
ular, this latter
ondition di�erentiates graphs with small-world properties from other random graphs.Graph-theoreti
 analysis of small-world networks led to the development of generativemodels [213, 215℄, su
h as the popular one proposed by Watts and Strogatz [292℄, as wellas distributed algorithms to rewire an existing network into one with small-world 
har-a
teristi
s [101℄. Appli
ations of small-world networks for 
omputer networks have beenanalyzed in [174, 175, 249℄; in this respe
t, the problem of navigability of su
h networks isof parti
ular interest for routing information using the lo
al information of ea
h node. Asmall-world network of N nodes is said to be navigable if a de
entralized routing algorithm,exploiting only lo
al information and information about the target node, enables routingin a number of steps proportional to log(N) [174℄.S
ale-free networks (Barabasi-Albert) S
ale-free graphs [185℄ model networks withpower-law degree distribution, where a large number of verti
es have small degrees, andfew verti
es have very large degrees (hubs). As proposed in [32℄, s
ale-free graphs 
an be
onstru
ted by a random pro
ess where links are added between nodes using preferentialatta
hment: the probability of 
reating a new 
onne
tion to a node is proportional toits 
urrent degree. S
ale-free networks inherit from random networks the 
hara
teristi
of small diameters [80, 79℄, but the di�erent degree distribution provides a better mat
hfor many examples of real-world networks, e.g the Internet, air tra�
 routes and airports,et
. Several resear
h studies have analyzed the robustness of s
ale-free networks againstrandom node failures and vulnerability to targeted atta
ks [20, 135, 85℄. It has been shownthat while s
ale-free graphs are more robust against random faults than random networksof 
omparable size, the latter better 
ope with targeted mali
ious atta
ks [47℄. This issueis related to the presen
e of hubs that, if targeted by an atta
ker, qui
kly 
ompromise the
onne
tivity of the whole network.2.4.2 Sear
h in unstru
tured overlaysSear
h in early peer-to-peer systems su
h as Napster [9℄ relied on 
entralized indexesthat provided the requesting peer with addresses of nodes storing the desired 
ontent;a
tual transfer of data was 
arried out by peer-to-peer intera
tion between nodes. In
ontrast to DHTs, in unstru
tured overlays it is not possible to easily determine whi
hpeer shares the desired information, thus fully distributed sear
h is typi
ally performedwith a �ooding proto
ol [94℄. Flooding involves sending the query, whi
h des
ribes thesear
h parameters su
h as the name of a �le, to some nodes in the overlay (typi
ally thetopologi
al neighbors of the node initiating the request). Re
ipients lo
ally determine
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tured solutions 29if the request 
an be ful�lled (based on their own 
ontent) and eventually respond tothe initiating peer. Otherwise, the query is further forwarded to other nodes. To avoidforwarding queries for an unde�ned number of steps, ea
h node 
an store a referen
e tore
ently pro
essed messages, and avoid retransmission if the same message has alreadybeen re
eived. Moreover, be
ause the size of the network is not known, ea
h messagehas an asso
iated lifetime (Time-To-Live, or TTL, Hops-To-Live, or HTL) value whi
hdetermines the maximum number of times it 
an be forwarded. While being simple toimplement, basi
 �ooding has a number of drawba
ks. Be
ause of its non-deterministi
nature, �ooding 
annot guarantee that all nodes that own the queried obje
ts will be
onta
ted, likewise most of the nodes pro
essing a query will likely not be able to ful�ll it.Beyond that, be
ause of the topology of the network, �ooding results in an exponentiallygrowing amount of messages, whi
h is aggravated by retransmissions that may o

ur intopologies with many redundant links [195℄.The number of nodes 
onta
ted 
an be limited by employing di�erent traversal andbroad
ast poli
ies. Be
ause it is often not ne
essary to rea
h all nodes in the overlayto ful�ll a query (the answer might just be found by 
onta
ting few 
lose-by peers), itis worthwhile to avoid forwarding to all neighbors or for an extensive number of hops.Meanwhile, adaptive overlay networks [181, 124℄ or hybrid topologies (i.e. super-peers[302℄) 
an be employed to limit the problem of message retransmission and redu
e overhead.In the following, some existing improvements will be reviewed: in this respe
t, it is pos-sible to make a distin
tion between uninformed (blind, or state-less) methods and informed(heuristi
-based, or state-full) ones [283℄. Uniformed methods do not rely on semanti
 in-formation and a
t upon the �ooding me
hani
s (TTL, number of 
onta
ted neighbors,et
.). On the 
ontrary, informed methods make use of heuristi
s based on semanti
 infor-mation about the query to dire
t the sear
h toward peers that are most likely to providean answer. An in-depth review and analysis of sear
h methods for unstru
tured overlays
an be found in [241, 306, 283℄.Traversal te
hniques A traversal te
hnique is the algorithm that de�nes the order inwhi
h nodes are visited during a query operation. Two 
ommon algorithms exist: breadth-�rst and depth-�rst. Breadth-�rst traversal visits nodes at progressively in
reasing dis-tan
e, up to a prede�ned depth (TTL). In the example network depi
ted in Figure 2.12, abreadth-�rst query initiated at node A with TTL equal to 2, will �rst be forwarded to nodes
Z,C,E (one hop distan
e from A), then to P,Q,F, S,R,B (two hops distan
e); nodes N,Kwill be omitted be
ause they lay at a three hops distan
e from A. Depth-�rst traversal
onta
ts nodes in one dire
tion at time with ba
ktra
king. In the example in Figure 2.13the visiting order for a depth-�rst query initiated by A might be Z,F,Q, P,C,E,B,R, S.Breadth-�rst traversal 
an a
hieve good response time be
ause queries 
an be easily par-allelized (nodes at ea
h level 
an be visited at the same time), but is prone to generatingmore tra�
 [196℄. Conversely, depth-�rst sear
h is more e�
ient but 
an result in longerdelays [167℄.Iterative deepening If the requested information has a high probability of being foundnear the requesting node, �ooding with in
reasing depth, also known as iterative deepen-ing, 
an signi�
antly redu
e the overall tra�
 [195℄. Queries are �rst broad
asted with
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Figure 2.12: Example breadth-�rst traversal in an unstru
tured topology, with Time-To-Live equal to 2.

Figure 2.13: Example depth-�rst traversal in an unstru
tured topology, with Time-To-Liveequal to 2. Last steps omitted for simpli
ity.small TTL values, using a breadth-�rst approa
h; the TTL value is progressively in
reaseduntil either a result is found, or an upper limit is attained. A more advan
ed solutionthat dynami
ally adapts the TTL a

ording to the popularity of the sear
hed 
ontent ispresented in [162℄.Random walks In 
ontrast to basi
 �ooding, random walk [195, 127, 199, 239℄ forwardsthe query to just one neighbor at time. The query randomly walks on the overlay un-til the target information is found, a pre-determined maximum number of hops has beenrea
hed, or the information has been found by some other walk. In the latter 
ase, peershave to 
onta
t the originating node and 
he
k if the query still needs to be forwarded
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tured solutions 31or not [195℄. While this approa
h signi�
antly redu
es the amount of tra�
 produ
ed bysear
h messages, the response time in
reases be
ause the probability of obtaining resultswithin an a

eptable number of hops is redu
ed [129℄. An improvement of this te
hniqueinvolves starting k multiple 
on
urrent random walks [195℄ (k random walkers) in orderto in
rease the probability of hitting a target. In [41, 42℄, random walk parameters areadapted a

ording to the popularity of the sear
hed 
ontent. Furthermore, random walks
an be 
ombined with shallow �ooding (i.e. �ooding with small TTL) to provide informa-tion about nearby nodes [16, 205, 128℄, hen
e both in
reasing the probability of su

essand redu
ing response time. Finally, [310℄ studies the 
onvergen
e of random walking indi�erent types of networks and with di�erent random neighbor sele
tion distributions. Anexample of random walk and k-random walk is depi
ted in Figure 2.14 a), respe
tively b):in ea
h step, ea
h walker is forwarded to a random neighbor.

Figure 2.14: Example random walk (a) and k- random walk (b) in an unstru
tured topol-ogy, with Time-To-Live equal to 4 and k=2.Teeming Flooding proto
ols visit a large number of nodes at ea
h forwarding step be-
ause all neighbors of the 
urrent node are 
onta
ted. If the queried obje
t is very populara
ross the network, forwarding the query to just a smaller number of neighbors still has ahigh probability of retrieving it. On this basis, probabilisti
 �ooding proto
ols (or teeming)[167, 94℄ forward the query only to a random subset of all available neighbors on ea
h node,namely they forward to ea
h neighbor a

ording to a �xed probability. A further improve-ment of this te
hnique, 
alled teeming with de
ay [184℄, involves redu
ing this probabilityas the number of hops in
reases. While teeming also results in an exponential growth ofthe tra�
 as the query travels deeper in the network, the growth is slower than in pure�ooding.Sele
tive forwarding Teeming redu
es the amount of tra�
 by limiting the number ofvisited neighbors, regardless of the fa
t that ignored peers might be able to ful�ll the query.If some information about neighbor nodes is known a priori, the forwarding algorithmmight be able to 
hoose whi
h peer is best suited to send the query to: this te
hniqueis known as sele
tive forwarding or guided sear
h. In [16, 290℄ queries are routed towardnodes with higher degrees. Similarly, in [219℄ nodes probe their neighbors before forwardingthe query, in order to �nd the one with the shortest round-trip time. In [83℄, the authors
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h me
hanism that uses 
ompound routing indi
es to sele
t the best queryrouting path. Su
h indi
es de�ne the goodness (i.e. probability of �nding a mat
hingdo
ument) of ea
h outgoing path 
on
erning a given topi
, and are periodi
ally updated byaggregating information about shared do
uments on nodes in ea
h path. Following a similarprin
iple, other solutions [153, 224℄ employ Bloom �lters [56℄ to determine whi
h forwardingpath is more likely to lead to the queried obje
t. Another approa
h [284℄ determines thedesirability of a neighbor based on previous intera
tion: if forwarding to a given neighborresults in a su

ess its goodness is in
reased, otherwise de
reased. The appealingness of aneighbor 
an also be 
omputed by 
ombining several metri
s, su
h as the 
ommuni
ation
ost, the node's degree, or the amount of shared information [313, 268, 298, 163℄.Repli
ation All aforementioned sear
h te
hniques involve a trade-o� between the prob-ability of ful�lling a query and the resulting network tra�
. In this 
ontext, repli
ationplays an important role in improving the e�e
tiveness and e�
ien
y of sear
h methods.Whereas in �le sharing networks 
ontent might be naturally repli
ated by the intera
tionbetween peers (for example, a popular song downloaded and then shared by a large numberof users), in other peer-to-peer systems an a
tive repli
ation me
hanism might be needed.We note that repli
ation 
an either involve a full repli
a of an obje
t, or just a referen
eto the node storing that obje
t. The simplest repli
ation strategy is one-hop repli
ation,where ea
h node knows its neighbors' identities or shared resour
es, and 
an thus reply toqueries on their behalf. Several repli
a allo
ation strategies have been thoroughly analyzedin [78℄: uniform, proportional to the number of requests (whi
h has been further analyzedin [278, 279℄), and proportional to the square-root of the query rate. While the �rst twolead to 
omparable results, the latter yields optimal performan
e. An evaluation of dis-tributed repli
ation algorithms that 
onverge to square-root allo
ation has been 
ondu
tedin [78℄, and on di�erent network topologies in [195℄. In the latter, two easily implementedrepli
ation methods are also proposed: owner repli
ation, where upon a su

essful sear
hthe obje
t is repli
ated on the requesting node, and path repli
ation, where the obje
t isrepli
ated on all nodes along the path between the providing and the requesting node.The bene�ts of repli
ation in random-walk proto
ols are also illustrated in [242℄. Otherrepli
ation strategies are dis
ussed in [280℄, where a repli
ation strategy based on the pop-ularity of the 
ontent and employing an optimal repli
a pla
ement me
hanism is proposed.It is important to note that repli
ation 
an also be bene�
ial to stru
tured peer-to-peersystems, as shown in [229, 233℄.Topology optimization The topology of the network has great in�uen
e on the e�-
ien
y of a sear
h proto
ol [70, 111℄. Even without introdu
ing stru
ture into the network,it is possible to optimize the overlay in order to support e�
ient forwarding. In this 
on-text, several studies [181, 288, 139, 124℄ have proposed solutions for e�
ient multi
asting,
alled topology-aware or proximity-aware, that adapt the overlay at runtime to mat
h theunderlying topology. These solutions minimize both retransmissions at the network leveland delays. Other solutions employ super-peers [302℄ to redu
e �ooding tra�
 by 
reatinga two-level overlay where a small number of high-
apa
ity peers are ele
ted to 
a
he infor-mation and route queries for a large number of normal peers. A proximity-aware overlaybased on super-peers has been presented in [161℄.
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tured solutions 33Other improvements Beside the aforesaid methods, there exist other te
hniques toimprove the e�
ien
y of sear
h in unstru
tured networks. With non-forwarding sear
hs
hemes [303, 188℄ ea
h peer maintains a lo
al 
a
he with a number of addresses of otherpeers. To maintain this 
a
he, ea
h peer periodi
ally sele
ts an entry and sends to the
orresponding node some of the addresses in the 
a
he, similarly to the operation of a gossipproto
ol. When a sear
h query is initiated on a peer, ea
h node in its 
a
he is iterativelyprobed for a result; when a peer is probed it returns a sample of its 
a
he, providing newentries in the 
a
he of the probing peer. Be
ause sear
h is managed lo
ally by one peer,the generated tra�
 
an be a

urately limited and does not result in exponential growthas with �ooding.In [84℄, the authors propose to exploit the semanti
s asso
iated with 
ontents sharedby ea
h node to 
onstru
t di�erent overlay networks for ea
h possible topi
. Nodes mayjoin several overlays, and queries 
an be e�
iently resolved by forwarding them to theappropriate overlay. A similar approa
h based on the 
reation of semanti
 groups is dis-
ussed in [77℄. In [73℄ a self-organized solution that extends the topology of the overlaya

ording to the results of previous sear
hes, hen
e promoting the emergen
e of strongly
onne
ted semanti
 
ommunities, is presented. A number of outgoing links on ea
h peerpoint toward nodes that are more likely to share 
ommon interests, thus providing pathsto qui
kly resolve future queries. Other approa
hes [114, 291℄ 
luster semanti
ally similarinformation in order to in
rease the re
all rate on
e a result for the query is found. Aswith other resour
e dis
overy improvement te
hniques, 
lustering 
an also be applied tostru
tured overlays, as in [147, 113℄.The bio-inspired solution proposed in [204℄ uses pheromone trails that are laid on theoverlay and are linked to sear
h topi
s. Queries are routed on the overlay following thepath with the highest pheromone 
on
entration; depending on the su

ess of the query,the 
on
entration on a path may be further reinfor
ed, or not. Similar bio-inspired routingme
hanisms are presented in [296, 108℄.In the following we review some popular unstru
tured systems, and highlight theirfun
tional design.2.4.3 GnutellaThe Gnutella proto
ol [3, 238℄, was qui
kly developed after the demise of the Napster[9℄, to 
reate a repla
ement for the popular �le-sharing network. Napster was the �rstsu

essful deployment of a hybrid peer-to-peer �le sharing system that relied on a 
en-tralized indexing server and de
entralized 
ontent provisioning. Legal issues led to theshutdown of Napster servers in 2001 [133℄, rendering the network unoperable. In orderto over
ome the weakness of the latter, Gnutella proposed a fully de
entralized sear
hproto
ol based on �ooding that removed the need for a 
entralized indexing servi
e thusover
oming the risk of further shutdowns. Later versions of Gnutella implemented asuperpeer infastru
ture, in order to redu
e the overhead of �ooding. In the following, wereview both basi
 Gnutella proto
ol [4℄, as well as improved developments su
h as [5℄and [69℄.



34 Chapter 2. Peer-to-Peer SystemsMessage routing Gnutella employs just �ve types of messages: Ping, Pong, Push (torequest the transmission of a �le), Query (to sear
h for a �le), and QueryHit (to su

essfullyrespond to a Query). Pong and QueryHit messages are sent in reply to Ping, respe
tivelyQuery messages. All messages ex
hanged by Gnutella peers are additionally labeledwith a unique identi�er and 
ontain a TTL value to limit the number of times they 
an beforwarded. This identifer helps dete
ting and avoiding possible message retransmissions,as well as enabling routing of responses. Con
erning routing, the proto
ol requires allresponse messages to be sent along the same path followed by the request; hen
e, peersmaintain a routing table that stores the identi�ers of the re
eived pa
kets, their sour
e peer,and their destination peer if they have been forwarded. If a node re
eives an unexpe
tedreply message (Pong, QueryHit, or Push) it will not further forward it.Joining and leaving Peers 
an join the Gnutella network by 
onne
ting to a nodealready in the network. A 
a
he server supports the bootstrap pro
ess by providing a listof peers. The node requests the 
onne
tion and if a

epted be
omes part of the network.Ea
h node periodi
ally sends a Ping message to ea
h neighbor: upon re
eiving a Ping, anode replies with a Pong message that 
ontains its address to notify its presen
e, and thenforwards the Ping on the network (up to a prede�ned distan
e). Pong replies are routedba
k along the same path that 
arried the 
orresponding Ping. With Pong messages nodes
an thus dis
over new peers and 
reate new 
onne
tions.

Figure 2.15: Joining and Leaving the Gnutella network.An example of the pro
ess of joining the network is illustrated in Figure 2.15. Node
W �rst requests a list of peers from the bootstrap 
a
he server (steps 1 and 2); W thentries to 
onne
t to a random node from the list (3), A in our example. The 
onne
tion isa

epted (4), and W be
omes part of the overlay. At some point, N pings its neighbors(5): ea
h node re
eiving the Ping message replies with a Pong that is routed ba
k to N ,whi
h �nally dis
overs W (6).Sear
h Gnutella 0.4 uses a breadth-�rst �ooding proto
ol to forward its requests onthe overlay en
apsulated in a Query message. Nodes that share a �le mat
hing the request
an reply with a QueryHit message. To request a �le transfer, the requesting node replies
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tured solutions 35to the QueryHit with a Push message. A
tual transfer of the �le is a
hieved using theHTTP proto
ol.Sin
e proto
ol version 0.6 [5℄, Gnutella employs a super-peer approa
h, by groupingpeers into leafs and ultrapeers. Ea
h leaf peer is 
onne
ted to several ultrapeers, to whi
hit sends its shared keywords, whereas ultrapeers are 
onne
ted together. The superpeerdesign redu
es tra�
 and the number of hops traveled by ea
h query, improving responsetime. The Gnutella2 proto
ol [6℄ (a fork of proto
ol version 0.6 that employs random-walk instead of �ooding) is also based on superpeers.Further resear
h TheGnutella proto
ol has been the subje
t of several studies aimedat understanding the dynami
s of peer-to-peer intera
tion, as well as at providing adjuste-ments to in
rease the e�e
tiveness and e�
ien
y. In depth analysis of Gnutella networksare the fo
us of [238, 15, 270℄; moreover [305, 26, 212℄ give insights about the se
urity ofGnutella: in parti
ular, 
on
erns su
h as Denial Of Servi
e (DOS) atta
ks and mali
ious
ontent spreading are analyzed, and solutions are dis
ussed.Improvements of Gnutella have been 
onsidered by Gia [69℄, whi
h ta
kles the prob-lem of sear
h e�
ien
y, and proposes to in
orporate a number of te
hniques to amelioratethe s
alability of the system. More spe
i�
ally, Gia employs biased random walks thatsteer queries toward nodes with higher degree, one-hop repli
ation, topology adaptationto ensure that only high-
apa
ity nodes have high-degrees, and tra�
 
ontrol to adaptthe network load to the 
apa
ity of ea
h node. Gia developers prove that the proposedsolution enhan
es the overall operation of the system by signi�
antly redu
ing the tra�
,while retaining the simpli
ity and �exibility of Gnutella.2.4.4 FreenetThe Freenet proje
t [75℄ aims at 
reating a distributed do
ument storage on an un-stru
tured overlay with small-world 
hara
teristi
s. The network operates on the prin
ipleof a darknet [40℄, and enables parti
ipants to store and retrieve do
ument anonymously.Freenet exploits the fa
t that small-world networks are navigable [249℄ to ensure the
onvergen
e of the employed greedy routing proto
ol.Message routing Nodes and shared obje
ts are univo
ally identi�ed using hash keys.Nodes' keys are randomly generated, whereas obje
ts' keys are an hash of their 
ontents.Freenet uses key-based routing to insert or retrieve 
ontent. With the help of a routingtable maintained by ea
h peer, obje
t queries are routed toward the node with the 
losestmat
hing identi�er. The routing table is updated when re
eiving query replies. As the sizeof the table is limited, a Least-Re
ently-Used algorithm is employed to 
leanup old entries;an enhan
ed entry repla
ement algorithm has been proposed in [308℄.Joining and leaving Nodes join the overlay by 
onta
ting some nodes in the overlay;the latter add the new
omer's identi�er in their routing tables. With time, the nodewill hopefully re
eive requests to publish �les and reply to queries that 
losely mat
h itsidenti�er.
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h To sear
h for a �le, the requesting node 
omputes the key of the �le and sends itto itself. Ea
h query has an asso
iated expiration time (TTL): if the query is not answeredwithin its TTL, it is 
onsidered as failed. Upon re
eption of a query, a peer 
he
ks in thelo
al storage to determine if it owns the requested obje
t. If the �le is not found in thelo
al storage, the query is forwarded to the node in the routing table asso
iated to the key
losest to the requested one. If a node that has already been 
onta
ted is rea
hed, therequest is returned to the previous node, whi
h then tries to 
onta
t the peer asso
iatedwith the next 
losest key in the routing table. When a peer sharing the requested �le isfound, a su

ess message is sent ba
k along the path traveled by the query until startingnode. Ea
h node traversed by the reply updates its routing table and stores a 
opy of the�le.To publish a new obje
t, the request is routed similarly as if the obje
t is being queried:ea
h traversed node 
he
ks against 
ollisions (existing obje
ts with the same identi�er). Ifno 
ollisions are dete
ted, the obje
t is published on ea
h node along the path.

Figure 2.16: Freenet query routing.Figure 2.16 depi
ts an example of messages ex
hanged during sear
h in a Freenetoverlay, numbers indi
ate steps in the pro
ess. We suppose that a user request for anobje
t with key T . The request is handled over to node A, whi
h forwards it to the 
losestknown mat
hing node, E. The query fails, and E forwards it to its 
losest mat
hing node,
Y , failing again to lo
ate the obje
t. The node then forwards if to the se
ond-
losest node,but this subsequently results in the query returning to E. The query is �nally forwardedto F , and �nally to T (where the requested obje
t is found). The reply is forwarded ba
kto A on the same path as the query.Further resear
h A 
hange of the routing proto
ol to improve its e�
ien
y has beenproposed in [74℄: the idea is to exploit information about response times, time to estabilisha 
onne
tion, and su

ess rate, to sele
t the best path to forward a query to. Whilethe latter indeed results in better routing performan
e [249℄, the proposal for su
h a newproto
ol was subsequently withdrawn in favor of a simpler approa
h in Freenet 0.7.



2.4. Unstru
tured solutions 372.4.5 Kazaa/Fasttra
kFasttra
k [7℄ is a proprietary �le-sharing proto
ol based on a super-peer ar
hite
ture, andemployed by the popular Kazaa 
lient [8℄. Due to the 
losed and en
rypted nature of theproto
ol, pre
ise information is relatively s
ar
e; nonetheless, reverse engineering throughtra�
 sni�ng and analysis [182, 189℄ enabled a better understanding of the 
ommuni
ationbetween ordinary peers and superpeers and the development of opensour
e 
lients [2℄. Inparti
ular, our review is based on the information provided in [189℄.Joining and leaving At startup, ordinary nodes probe the 
onne
tion with several
andidate superpeers and retain the best suited one. It is assumed that FastTra
ktakes lo
ality and workload into a

ount, by having ordinary peers preferably 
onne
tedto 
loseby superpeers whose workload is low. The workload of a superpeer is related to thenumber of 
onne
tions it maintains with ordinary peers; sele
tion of the parent superpeeris based on this measure and provides a load balan
ing e�e
t. After the initial 
onne
tion,a peer re
eives list of additional superpeers that are 
a
hed for later use.Fasttra
k promotes ordinary peers to super-peers when higher performan
e and
onne
tivity than globally de�ned thresholds are dete
ted; superpeers maintain 
onne
tionswith ea
h others and form the ba
kbone of the system.Sear
h Superpeers index the 
ontent shared by normal peers: ea
h obje
t is identi�edby its hash. To sear
h for a �le, an ordinary peer sends the query to the superpeer towhi
h it is 
onne
ted. After the latter replies, the peer 
onne
ts to other superpeers togather additional results, and remains 
onne
ted to the last 
onta
ted superpeer. Onsuperpeers, queries are resolved by 
onsulting the lo
al index and by eventually 
onta
tingother superpeers: the tra�
 analysis in [189℄ reveals that superpeers do not ex
hange theirindi
es.2.4.6 SaxonsSaxons [262, 263℄ maintains an overlay with low laten
y, high bandwidth paths, as well assmall distan
es. The overlay provides e�
ient multi
ast 
ommuni
ation a
ross the overlaythat 
an be exploited to deliver higher level servi
es. In addition to overlay neighbors,ea
h node maintains a dynami
ally 
hanging set of peers' addresses, a number of whi
his periodi
ally sent to neighbors; the identi�er of the node sending the information mightbe within the transmitted list, allowing the node to spread its identity a
ross the overlay.Nodes periodi
ally measure the laten
y and bandwidth of known nodes, and add themas a
tive neighbors (possibly repla
ing existing ones) a

ording to the desired stru
turequality and the maximum allowed node degree.It is important to stress the fa
t that Saxons does not implement any spe
i�
 queryingme
hanism, but leaves the 
hoi
e to appli
ations implemented on top of it. Nonetheless, theauthors experimented with a Gnutella-like �ooding proto
ol and obtained redu
ed laten
yand in
reased bandwidth 
ompared to a random overlay built on the same underlyingnetwork.



38 Chapter 2. Peer-to-Peer SystemsJoining and leaving A node 
onne
ts to the overlay by a
quiring a random list of nodesfrom the lo
al set of an existing (bootstrap) node, and subsequently trying to establish
onne
tions with peers in su
h list. The node then starts periodi
 ex
hanges of its lo
alset with other peers, in order to gain knowledge about the network.2.4.7 UMMUMM [239, 240℄ (whi
h stands forUnstru
tured Multi-sour
e Multi
ast) uses a self-organizedadaptation me
hanism to optimize an unstru
tured overlay with the goal of improvingbandwidth and redu
ing 
ommuni
ation laten
y in multi-sour
e multi
ast 
ommuni
ation.UMM uses a two layer ar
hite
ture separating the tasks of maintaining a base overlay andof disseminating the information in an e�
ient way. Conne
tions in the base overlay arearranged both to redu
e laten
y and to in
rease available bandwidth, similarly to Saxons.UMM 
onstru
ts and maintains e�
ient multi
ast distribution paths by dete
ting andavoiding dupli
ate tra�
. The system monitors in
oming tra�
 and 
he
ks for dupli
atemessages; if dupli
ation is dete
ted, the sour
e of the message is informed not to forwardfurther messages through the same path (
alled tunnel). The 
onne
tion between twonodes is not permanently removed, but temporarly �ltered; to prevent partitioning of theoverlay in the event of a 
rash, �lters are reset when failures are dete
ted.Figure 2.17 illustrates the dupli
ate message dete
tion: in the �rst step (a), Amulti
astsits message to its neighbor E, with a laten
y of 70ms. The message is further transmittedfrom E to S and B with a laten
y of 40ms, respe
tively 210ms (b). In the last step (
),
S forwards the message to B; the latter will �nally re
eive the message from both S and
E: dete
ting the dupli
ation, B will ask E to �lter the tunnel (E to B), thus avoid usingit for forwarding messages from A.

Figure 2.17: UMM dupli
ate message dete
tion.Joining and leaving When a node 
onne
ts, it gathers the addresses of a number ofpeers by 
onta
ting a node in the overlay. These addresses de�ne the initial neighborsfor the base overlay. Information is further ex
hanged with other nodes by means of anepidemi
 proto
ol. Periodi
ally, an optimization pro
ess measures the link quality for arandom subset of known nodes, in order to determine tunnels optimized for laten
y andtunnels optimized for bandwidth.
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tured solutions 392.4.8 PhenixPhenix [10℄ 
onstru
ts a low-diameter overlay with power-law degree distribution withthe goal of o�ering faster query response time. Furthermore, the identity of high-degreenodes is hidden, to prevent mali
ious users from atta
king them, and in
rease resilien
y.Joining and leaving A node ni wanting to 
onne
t to the Phenix overlay requestsa list of addresses of peers in the overlay from a 
a
he server. The list is divided intotwo subsets, Grandom and Gfriends. The node ni then sends a ping message to all peers in
Gfriends: upon re
eiving the ping, peers reply with a pong message that 
ontains the list oftheir own neighbors. The ping message is then forwarded one more step into the network:nodes re
eiving it, add ni to a temporary list Γ. All neighbors of nodes in Gfriends areinserted into a Gcandidates list, whi
h is sorted a

ording to the frequen
y of appearan
e.The topmost nodes are thus the nodes that are most known in the network, and are used to
reate the Gpreferred list. The �nal neighbors of ni are the union of Grandom and Gpreferred;subsequently, for ea
h neighbor node in Gpreferred, ni tries to establish a 
onne
tion: ifa

epted, the identi�er of the node is moved to the Ghighlypreferred list, respe
tively ni isadded to Gbackward on the a

epting node. A node may refuse a 
onne
tion be
ause themaximum number of neighbors has already been rea
hed.Thanks to the neighbor sele
tion pro
ess, nodes that have a high-degree will preferably
hosen as neighbors by in
oming nodes. Random neighbors are nonetheless kept to improveresilien
y.Resilien
e to atta
ks Phenix employs di�erent me
hanisms to prote
t the networkfrom targeted atta
ks. On one side, the system attempts to hide the identity of high-degree nodes; on the other side, a node maintenan
e pro
edure re
overs the network in theevent of an atta
k. To 
on
eal high-degree nodes, re
urrent ping messages or malformedpings (for example, with TTL greater than 1) are silently dropped by the system. Further-more, the Gbackward list is never dis
losed in the list sent in response to a ping message,thus preventing nodes from gaining knowledge of the popularity of the node. The nodemaintenan
e pro
edure is used to probe for peers that may have left the system, and 
reatenew random or preferred 
onne
tions.2.4.9 News
astNews
ast [159℄ employs a simple epidemi
 proto
ol that results in the emergen
e of asmall-world network. The topology is determined by the list of addresses maintained byea
h peer, whi
h is periodi
ally ex
hanged with other peers. Beside a small diameterand a high 
lustering 
oe�
ient, News
ast overlays exhibit resilient behavior in failuresituations, even when a large portion of the peers simultaneously dis
onne
t.Ca
he merge Ea
h node maintains a 
a
he 
ontaining the identi�ers and addressesof n other peers in the overlay. Ea
h 
a
he entry is asso
iated with a timestamp thatdetermines the age of the entry. Information 
ontained in the 
a
he is shared with otherpeers by means of an epidemi
 proto
ol [158℄. Periodi
ally, a node sele
ts a random entry in
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a
he, 
onta
ts the 
orresponding peer and initiates a 
a
he merging operation. Ca
hemerging 
onsists in 
opying the 
ontents of the two peers' 
a
he and retaining at most the
n− 1 newest entries a

ording to their timestamp. These entries 
onstitute the new 
a
hefor both peers parte
ipating in the merge. To 
omplete the merge, peers add an entry
orresponding to ea
h other in the 
a
he with updated timestamps. The merge operationenables nodes to 
reate new 
onta
ts, �ushes old entries, while retaining a resilient and
onne
ted overlay.A Ca
heid timestampS 45P 53Q 39R 44S Ca
heid timestampX 37K 77C 15D 33Figure 2.18: Before merge

Merged Ca
heid timestampK 77P 53S 45R 44Q 39X 37D 33C 15Figure 2.19: Merging

A Ca
heid timestampK 77P 53R 44S 90S Ca
heid timestampK 77P 53R 44A 90Figure 2.20: AfterFigure 2.21: News
ast 
a
he merging operation.Figures 2.18, 2.19, 2.20 illustrate the merging operation initiated by node A at time 90.Node S is sele
ted as 
andidate for the merge, the 
ontents of A and S 
a
he are uni�ed,and the most re
ent entries are retained. Node A is inserted in the resulting 
a
he of S,whereas node S appears in A's 
a
he.Further resear
h Epidemi
 membership management proto
ols have been also used inother systems, su
h as Cy
lon [285℄ and T-Man [157℄. In parti
ular, T-Man repla
esthe random entry sele
tion employed during 
a
he merges with a deterministi
 
hoi
ebased on a ranking fun
tion; a

ordingly, a 
ontrol on resulting graph 
an be asserted toprodu
e sorted or 
lustered topologies. Moreover, a semanti
 based overlay built on top ofa Cy
lon overlay is presented [287℄. A general overview of gossip proto
ols for distributedsystems 
an be found in [173℄.2.4.10 Other approa
hesAs with stru
tured overlays, beside the ones reviewed in the previous se
tions, a numberof other unstru
tured designs exists. Among the interesting solutions, [311℄ presents aGnutella-like system that employs topology adaptation to organize peers into semanti
groups, whereas [252℄ proposes the 
onstru
tion of a Gnutella-like overlay that optimizes�ooding by redu
ing the number of small 
y
les. In [65℄ the authors introdu
e a hybridsolution that employs unstru
tured sear
h methods (�ooding and random walks) on top
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hurn 41of a stru
tured overlay (Pastry): in 
ontrast to a random overlay, a stru
tured solutionavoids redundan
y and enables �ner 
ontrol of the nodes visited by a query.2.5 Peer-to-Peer 
hurnPeer-to-peer networks are dynami
 systems where peers 
ontinuously join and leave. Ea
hpeer remains 
onne
ted to the system for some amount of time, de�ned as session [271℄.Churn is determined by the dynami
s of peer a
tivity, namely the frequen
y of joins andleaves and the length of peer sessions. Understanding 
hurn and its e�e
t on the reliabilityof a network is essential for the deployment of robust and predi
table large s
ale systems.Resear
h on 
hurn in peer-to-peer networks has fo
used on analyzing this e�e
t in real-world stru
tured networks [29, 130, 248, 271℄, as well as in unstru
tured ones [304, 183, 38℄.Several studies have highlighted the di�
ulty of pre
isely measuring the dynami
s of alive system. Some of the a
hievements 
on
ern the development of statisti
al models todes
ribe or predi
t the behavior of distributed systems under 
hurn. In [248℄, the authorsprovide an analyti
al study of Chord's performan
e and validate their result by meansof simulations. Comparative analysis of di�erent DHTs in [160, 236℄ highlight the 
ost ofmaintaining proper operation under 
hurn and the negative e�e
ts of short session times.In parti
ular, heavy 
hurn results in either failed lookups requests (Pastry) or in
reasedlaten
y (Chord).The resilien
e of a peer-to-peer system relies in its ability to 
ope with 
hurn. In[136℄ three aspe
ts of resilien
e to 
hurn are identi�ed: data repli
ation, routing re
ov-ery, and stati
 resilien
e. Routing re
overy strategies 
an either be rea
tive or periodi
[236℄: whereas rea
tive re
overy takes pla
es only when a failure has been dete
ted, peri-odi
 re
overy involves a 
ontinuous ex
hange of information between nodes, regardless ofthe dete
ted 
hanges in the network. While 
onsuming less bandwidth under low 
hurn,rea
tive re
overy be
omes more expensive as the dynami
s of the network in
rease, and
an 
reate positive feedba
k 
y
les if the network be
omes 
ongested. In parti
ular, 
on-gestion may lead a node to think that a neighbor has failed, and the subsequent re
overy
an worsen the situation by in
reasing the tra�
. To solve this problem, the use of aperiodi
 re
overy strategy 
ombined with a more 
onservative rea
tive re
overy has beensuggested [236℄. Stati
 resilien
e refers to the ability of the network to avoid failure orpartitioning even before re
overy a
tions take pla
e, for example using redundant links inan unstru
tured network.It is often argued that unstru
tured solutions are more robust toward the e�e
ts ofheavy 
hurn; the results presented in [66℄ reveal that it is nonetheless possible to 
re-ate resilient stru
tured solutions. However, the proposed 
on
epts further 
ompli
ate themaintenan
e of stru
tured solutions; moreover the sear
h e�
ien
y of the latter might be
ounterbalan
ed by real-world 
hurn rates [250, 38℄ whi
h indu
e high re
overy 
osts.2.6 Peer-to-peer for Grid Resour
e Dis
overyGrids are distributed systems that support resour
e sharing and 
ollaboration, and operateon well-de�ned infrastru
tures, whi
h provide servi
es for resour
e dis
overy, resour
e man-



42 Chapter 2. Peer-to-Peer Systemsagement, monitoring, and se
urity [116℄. Resour
e dis
overy is the pro
ess of determiningwhi
h grid resour
e is the best 
andidate to 
omplete a job [257℄. The dis
overy operationhas to 
omplete in the shortest amount of time, with an e�
ient use of resour
es, and atminimum 
ost [257℄. In this respe
t, resour
e dis
overy is typi
ally a
hieved by means of
entralized or hierar
hi
al information systems, although proposals for fully de
entralizedapproa
hes based on the peer-to-peer paradigm exist [152, 144, 282℄.Grid versus Peer-to-Peer In order to understand how peer-to-peer te
hnologies 
ouldharness the deployment of future grids, a brief review of the 
ommon traits and di�eren
esbetween the two 
on
epts is required. The analysis 
ondu
ted in [282℄ highlights severalpoints of distin
tion, in terms of shared resour
es, target users, infrastru
ture, s
ale, se
u-rity, and appli
ations. Whereas grids are 
hara
terized by a moderate number of trustedentities, peer-to-peer 
ommunities 
onsist of a multitude of untrusted systems that are less
on
erned with quality of servi
e poli
ies and reliable servi
e provisioning [116℄. Thesedi�eren
es also re�e
t the interests put in the development and operation of su
h systems:grids are supported by large investments and 
ommon e�ort from the involved parties,meanwhile peer-to-peer systems are loosely 
oupled platforms with little in
entives for
ooperation.Con
erning resour
es and appli
ations, peer-to-peer systems have mostly emerged as�le-sharing platforms, whereas grids typi
ally target large s
ienti�
 
omputing tasks. Inthis regard, systems parti
ipating into a grid are more powerful, persistent, and better
onne
ted than those in a peer-to-peer network, and they are managed through stri
teruser and a

ess poli
ies whi
h 
ontribute to a more robust and reliable operation. Partlybe
ause of larger s
ales, loose dependen
y between resour
es, and non-
riti
ality of thedeployed appli
ations, peer-to-peer systems have better fault-resilien
e than grids. Thisdi�eren
e is aggravated by the fa
t that traditional grid systems rely on 
entralized orhierar
hi
al management [178, 86℄, whi
h determine weak points. Peer-to-peer systemsalso exhibit a higher degree of parti
ipation dynamism, with shorter session times andfrequent 
onne
tions and dis
onne
tions, while maintaining a relatively stable set of sharedresour
es. In 
ontrast, hosts 
onne
ted to grids are relatively stable, but the availabilityof shared resour
es greatly varies over time [275℄.Convergen
e of grid and P2P Convergen
e of grid and peer-to-peer has been deemedbene�
ial for both platforms [282℄. As grid systems s
ale up and integrate a large number of
ommodity hardware, the boundaries that separate them from peer-to-peer networks dis-appear; a

ording to this vision, future grids will see 
entralized management repla
ed byfully distributed solutions, seeking to in
rease reliability and to avoid bottlene
ks. Mean-while, su
h next-generation grids, 
omposed of a large number of nodes, will need to relaxparte
ipation requirements 
on
erning trust and se
urity, and assume the �exible and self-organized behaviors required to minimize management 
osts. The experien
e a
quiredwith peer-to-peer systems is 
ontinuosly being transferred to grids. A

ordingly, we havewitnessed the arousal of peer-to-peer solutions for distributed resour
e dis
overy, s
hedul-ing, and storage. Nonetheless, implementing peer-to-peer information systems ne
essitatesa 
hoi
e between stru
tured and unstru
tured overlays, whi
h is tied to the goals and re-quirements of the intended deployment s
enario. Whereas stru
tured overlays enable very
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e Dis
overy 43e�
ient keyword sear
h, unstru
tured ones allow for 
omplex queries and typi
ally requireless e�ort to manage the overlay. In the following, we review the requirements set by ourevaluation s
enario of a grid, and highlight the dire
tions and design 
hoi
es that 
ouldbene�t the proje
t.2.6.1 Peer-to-Peer Grid information systemsIn this se
tion we review some of the existing grid information systems based on peer-to-peer te
hnologies. In-depth review and 
omparison of di�erent models and solutions 
anbe found in [231, 282, 201, 202℄.Stru
tured Systems As shown in the previous se
tion, stru
tured solutions enablee�
ient and deterministi
 information retrieval. Unfortunately, grid resour
e dis
overy
annot easily bene�t from these systems, as queries 
annot be mapped to simple hashedkeys. More spe
i�
ally, in 
ontrast to �le indexing (typi
al of peer-to-peer �le sharing),querying grid resour
es depends on the use of 
omplex queries 
omposed of multiple at-tributes whose values are often numeri
al ranges rather than pre
ise values. As dis
ussedin the pre
eding se
tions, several DHTs support range request, and solutions targetinggrids have been developed. As an example, in [141℄, the authors propose to use a P-Gridoverlay to implement a de
entralized information system; in a similar way, [60℄ implementsa resour
e dis
overy servi
e on a CAN overlay. To support multi-attribute requests (Se
-tion 2.3.11) the 
ombination of di�erent independent overlays, ea
h indexing a di�erentattribute [24, 218, 39℄, has been proposed. Moreover, some examples of DHT with supportfor multidimensional range queries within a single overlay exist [186, 258, 281, 273, 260℄,but 
ome at the expense of additional 
omplexity in managing the network.The system presented in [275℄ implements a grid information system that employsdi�erent te
hniques to support multi-attribute queries. A Chord-like ring that uses 
on-sistent hashing provides support for range-queries; several rings are deployed to supportmultiple attributes. Furthermore, �ooding is used to resolve arbitrary queries, and queries
on
erning dynami
 resour
es. In 
ontrast, XenoSear
h [266℄ models resour
es in amulti-dimensional spa
e that is distributed a
ross the nodes. Using a Pastry overlay,queries are dire
ted toward the nodes serving the required partition of the spa
e. A similarsolution proposed in [33℄ divides the attribute spa
e among nodes using a tree stru
ture.Unstru
tured systems Unstru
tured systems do not limit the 
omplexity of queries,as ea
h request is resolved lo
ally on ea
h node. In this regard, unstru
tured P2P networksare better suited for integration with existing grid middlewares, be
ause the latter maystore information using an arbitrary format rather than a �xed s
hema [71℄. In [200℄, theauthors propose a super-peer system mat
hing the physi
al organization of nodes. Ea
hsuper-peer is responsible for indexing resour
es shared within its administrative domain,for 
ommuni
ating with super-peers of other domains, as well as for managing resour
edis
overy requests from ordinary nodes. This resear
h also highlights the need for strate-gies to improve the e�
ien
y of resour
e dis
overy. In the same dire
tion, resear
h in[151℄ dis
usses the implementation of an unstru
tured peer-to-peer information systemand analyzes di�erent query forwarding strategies.



44 Chapter 2. Peer-to-Peer SystemsCommon issues Both stru
tured and unstru
tured systems have to deal with 
ommonissues, su
h as de
reased performan
e 
ompared to 
entralized indexes (longer responsetimes), and se
urity 
on
erns [71℄. Regarding the latter, several propositions have beenmade to address the problem, su
h as [92, 102℄. These drawba
ks are nonetheless balan
edby the in
reased robustness and fault toleran
e of the system.2.7 SummaryThis 
hapter presented an overview of the 
urrent state of the art in peer-to-peer systems.The fundamental prin
iples of stru
tured and unstru
tured solutions have been detailed,and noteworthy examples of both 
lasses of peer-to-peer infrastru
tures have been dis-
ussed. Moreover, in relation to the 
onsidered evaluation s
enario of a grid, importantaspe
ts and issues related to robustness under 
hurn and appli
ation in grid environmentshave been analyzed.Although stru
tured systems exhibit deterministi
 sear
h performan
e that enablese�
ient key based lookups, solutions that support multi-dimensional and multi-attributequeries are more 
omplex and might still not be enough to support ri
h queries that aretypi
al in some s
enarios su
h as grids. Moreover, a 
omplete analysis of the behavior androbustness of su
h systems under high 
hurn is rather s
ar
e. On the 
ontrary, unstru
turedsystems build on simpler designs and enable real full-text queries,The knowledge a
quired leads us to a better understanding of the bene�ts and limitsof 
urrently available solutions, hen
e providing a solid base for innovation.
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BlåtAnt indi
ates a family of novel overlay management algorithms built around a
ommon set of rules that fo
us on optimizing logi
al 
onne
tions between nodes in or-der to redu
e tra�
 generated by resour
e dis
overy queries broad
asted on the network.Furthermore, the BlåtAnt algorithms provide fault-tolerant and fault resilient behaviorto prevent partitioning of the overlay and ensure reliable operation even in the 
ase ofunexpe
ted failures.3.1 Requirements and goalsAn overlay management algorithm for the 
onsidered grid s
enario must ful�ll severalrequirements in order to provide a robust 
ommuni
ation infrastru
ture that enables thedevelopment and deployment of high-level servi
es, su
h as resour
e dis
overy and tasks
heduling. A

ordingly, in the following we review the desired features, and highlight the
orresponding resear
h dire
tions.Fault tolerant and fault resilient operation The proposed solution should be ableto 
ope with transient unexpe
ted 
ommuni
ation errors or node faults, without in
urringa 
omplete breakdown of the overlay but gra
efully degrading its performan
e. Moreover,dete
ted failures in the overlay 
onne
tivity must be re
overed in order to ensure minimalnegative impa
t on the operation of the system. In this regard, with fault tolerant opera-tion we intend the ability of over
oming 
ommuni
ation problems that lead to loss of theinformation being transferred between nodes; 
onversely, a resilient behavior is required torea
t to problems su
h as node 
rashes and ensure that the overlay remains 
onne
ted.Support for arbitrarily 
omplex queries The overlay must be as generi
 as possible,in order to support di�erent deployment s
enarios other than the grid one 
hosen forevaluation. Hen
e, the overlay should not make any assumption neither on the type ofresour
es shared by nodes, nor on the querying me
hanism or the 
omplexity of the queries.Avoidan
e of weak spots In the review presented in the previous 
hapter, hubs wereidenti�ed as weak point in power-law topologies. In this regard, the 
onsidered approa
hshould avoid 
reating s
ale free topologies, and aim at almost uniform node degree distri-bution.Support for e�
ient 
ommuni
ation Sear
h in a peer-to-peer overlay may in
ur largetra�
 overheads. For this reason, the topology should be optimized to avoid redundant
onne
tions and unne
essary links between nodes. Additionally, to avoid long responsetimes, the maximum distan
e between any pair of nodes in the overlay must be small.Self-organized and adaptive behavior In order to redu
e management 
omplexity,the overlay must be able to autonomously adapt to 
hanges in the 
onditions of the network,su
h as the addition of new nodes and the removal of existing ones, in order to 
ontinuously



3.2. Basi
 algorithm 47meet the aforementioned requirements. It is nonetheless desirable that stable network
onditions, without any node joining or leaving the overlay, result in a stable overlay,hen
e a trade-o� between adaptiveness and stability must be found.Simple, fully distributed design The overlay management algorithm must not de-pend on 
entralized 
ontrol. Nodes should 
ooperate in a fully distributed asyn
hronousway, without global information. Furthermore, the 
omplexity of the algorithm must below, to avoid unwanted pro
essing overhead on the nodes.As highlighted in the review of peer-to-peer systems in Chapter 2, stru
tured solutionsgenerally link the overlay stru
ture to data, and typi
ally do not allow for e�
ient resolu-tion of arbitrarily 
omplex queries. A

ordingly, in our work and for our requirements anunstru
tured solution is preferable. Meanwhile, we strive to optimize the overlay so as toensure e�
ient 
ommuni
ation; under these premises, BlåtAnt goals are twofold: on oneside, it aims at 
onstru
ting and maintaining an overlay with bounded diameter, in orderto limit the maximum delay to rea
h any node. On the other side, the algorithm also min-imizes the number of redundant 
onne
tions, by breaking up 
y
les that are shorter thana user-de�ned threshold. To meet the aforementioned requirements for fault tolerant, self-organized and adaptive operation, we propose to use bio-inspired te
hniques; in parti
ular,some parts of the algorithms have taken inspiration from the behavior of ant 
olonies, aparadigm whi
h has led to the su

essful deployment of solutions for other network relatedproblems [62℄.3.2 Basi
 algorithmThe optimization pro
ess implemented by BlåtAnt bounds the diameter and the girthof the overlay by 
reating and removing logi
al links between nodes. More spe
i�
ally, weaim at transforming an existing overlay, represented by an undire
ted graph G, so thatfor a, b ∈ N
∗, the diameter dG in the resulting graph satis�es dG ≤ b, and the girth gG is

a ≤ gG. The upper bound on the diameter ensures that nodes are rea
hable within a knownnumber of hops in the overlay, thus the query forwarding 
an be limited without leavinga large part of the network unvisited. Conversely, the lower bound on the girth preventssmall 
y
les, and redu
es the probability that a query will be forwarded to the same nodemultiple times through di�erent paths. The underlying pro
ess exe
uted by the algorithmthus 
onsists in rewiring the network by 
reating and removing logi
al 
onne
tions betweennodes. In order to ensure a stable and 
onvergent behavior, the rewiring algorithm mustterminate when a graph ful�lling the aforementioned 
onditions is obtained.The optimization problem fa
ed by BlåtAnt is similar to the degree-girth problem[106℄, whi
h is 
on
erned with �nding topologies with the smallest possible number ofverti
es given degree and girth. This issue is related to the degree-diameter problem[207, 22℄, whi
h aims at determining the largest graphs of given maximum degree andgiven diameter. Although our resear
h fo
uses on resembling goals, a dis
ussion of themathemati
al impli
ations of our approa
h in the �eld of graph theory and 
ombinatori
sis out of the the s
ope of this thesis.



48 Chapter 3. BlåtAnt Algorithm3.2.1 Rewiring algorithmThe rewiring algorithm is 
omposed of two steps: one for governing the 
reation of newlinks, and one for triggering the removal of existing links. In order to set an upper boundto the diameter of the resulting network, new links may be 
reated. As we want to boundthe diameter to dG ≤ b, we perform the:Step 1 Conne
t two nodes x and y, when their distan
e is greater than
b, i.e. dG(x, y) ≥ b+ 1.When 
onne
ting x, y a 
y
le of length b+2 is 
reated in the graph, where the distan
ebetween all pair of nodes in the 
y
le is ≥ b

2 . Conversely, to enfor
e a lower bound on thegirth, no 
y
le of length < a must exist. This is a

omplished by:Step 2 Any 
y
le of length < a is broken.To ensure a stable and 
onvergent behavior, the algorithm must nonetheless avoiddestroying 
y
les it 
reates, hen
e the lower bound for the girth is a = b + 2 (i.e. thealgorithm 
an 
reate 
y
les that have a length greater or equal to the desired girth).Algorithm The rewiring algorithm is de�ned by repeating the aforemen-tioned steps 1, 2, until the distan
e between any pair of nodesis ≤ b and no 
y
le has a length < a.The following theorem relates the 
onditions on the diameter and on the girth:Theorem 3.2.1. Let G be an undire
ted graph where the rewiring algorithm has beenapplied until termination for a given a, b N
∗, a = b + 2; dG and gG be the diameter,respe
tively the girth of G. Then b+2

2 ≤ dG ≤ b, and gG ≥ b+ 2.Proof. The lower bound for the girth, as resulting from the algorithm, is a = b+ 2 ≥ gG,thus gG
2 ≥

b+2
2 . If the graph 
ontains no 
y
les, then its girth is in�nite; otherwise dG ≥ gG

2 :if the graph is a 
y
le, then the results follow; otherwise, the maximum distan
e betweennodes in the smallest 
y
les (the size of whi
h 
orresponds to the girth) determines thelower bound for the diameter. First 
onsider the 
ase of a graph with at least one 
y
le;in this 
ase we have:
b+ 2

2
≤
gG
2
≤ dG ≤ b (3.1)If the graph has no 
y
les, gG =∞, thus a < gG ∀a. Furthermore, its diameter is dG ≤ b,otherwise 
onne
tions would have been 
reated by the algorithm resulting in at least one
y
le.To simplify the optimization rules that will be presented in the following se
tion, werepla
e b+2

2 = D, D ∈ N
∗, in equation 3.1 to obtain:

dG ≤ 2D − 2 (3.2)for the diameter, respe
tively for the girth:
2D ≤ gG (3.3)The value of D is 
onsidered as the optimization parameter of our algorithm.



3.3. Topology optimization rules 493.3 Topology optimization rulesWe now express the results of equation 3.1 as Conne
tion and Dis
onne
tion rules. Byapplying these rules a �nite number of times on a 
onne
ted graph G, the resulting diameter
d is is bounded a

ording to dG ≤ 2D − 2.Conne
tion Rule Let ni and nj be two non-
onne
ted nodes in a 
onne
tedgraph G, and dG(ni, nj) the minimal routing distan
e from ni to nj in G. A newlink between ni and nj is 
reated if the following 
ondition holds:

d′G(ni, nj) ≥ 2D − 1 (3.4)where d′G(x, y) is de�ned as min(dG(x, y), dG(y, x)). The logi
al 
onne
tion is
reated by adding ni to Nj , respe
tively nj to Ni.The Conne
tion Rule bounds the maximum distan
e between ea
h pair of nodes, hen
ethe diameter of the network, to a value less than 2D − 1. Conversely, the Dis
onne
tionRule is applied in order to remove links that represent redundant paths in the graph thusbreaking small 
y
les and bounding the girth to a value gG ≥ 2D.Dis
onne
tion Rule Let ni and nj be two 
onne
ted nodes in an overlay net-work G, i 6= j. Let G′ ← G \ {ni} and Ni the set of neighbors of ni. Node ni isdis
onne
ted from nj ∈ Ni if:
∃ nk ∈ Ni, k 6= j, |Nj | > |Nk| : d∗G′(nj , nk) ≤ 2D − 3 (3.5)where d∗G(x, y) is de�ned as max(dG(x, y), dG(y, x)). The dis
onne
tion 
onsistsof removing ni from Nj , respe
tively nj from Ni.Safeness of the Dis
onne
tion Rule The presented rules ensure that the diameter aswell as the girth in the resulting network are bounded a

ording to the previously des
ribedlimits. Nonetheless, the optimization pro
ess may 
onverge only when global and pre
iseinformation about the overlay is available. In a fully distributed implementation, whereea
h node must rely on partial and potentially out-of-date information about the overlay,guaranteeing proper operation is more di�
ult. Whereas degraded information about pathdistan
es in the overlay just in
reases the average path length and results in a less optimizedoverlay, 
on
urrent appli
ation of the Dis
onne
tion Rule may lead to a partitioning of thenetwork and thus disruption of higher-level 
ommuni
ation. In a situation where 
ompleteknowledge of the overlay is available ea
h 
y
le 
an only be broken on
e, thus the overlay
annot be partitioned. In a fully distributed s
enario lo
al information on ea
h node maybe outdated, e.g. refer to 
y
les that have already been broken. Hen
e, to ensure thatthe algorithm works as expe
ted a restri
tion on the Dis
onne
tion Rule is introdu
ed:for ea
h 
onsidered 
y
le, only the node with the greatest identi�er (a

ording to someordering known to all nodes) is allowed to perform a dis
onne
tion. That node is referredas to the master of a given 
y
le. Letting only the master node perform dis
onne
tionsprevents partitioning, but nonetheless requires the master to keep tra
k of broken 
y
les, asolution whi
h has the potential drawba
k of requiring a large amount of storage on ea
h



50 Chapter 3. BlåtAnt Algorithmmaster node, espe
ially in very dynami
 networks. The solution that is adopted in ourwork is to only allow the master of a 
y
le to remove links with its own neighbors, thusmaking it possible to verify whether the 
y
le has already been broken by relying only onalready available lo
al and up-to-date information.3.4 BlåtAnt-RThe BlåtAnt-R algorithm is a fully distributed implementation of the topology optimiza-tion rules that employs bio-inspired swarm intelligen
e te
hniques to 
olle
t and spreadinformation a
ross peers. The algorithm presented in this thesis is derived from the oneintrodu
ed in [51℄; more spe
i�
ally, the underlying logi
 of the 
onne
tion and dis
on-ne
tion rules has been adapted to follow the mathemati
al 
onstru
tion presented at thebeginning of this 
hapter. BlåtAnt-R is the se
ond fully distributed implementation ofthe algorithm: the �rst distributed implementation of BlåtAnt [49, 50℄ didn't supportfault toleran
e, and was thus not suitable for deployment in a real network. In this respe
t,BlåtAnt-R represents the �rst fully fault tolerant version of the algorithm. In 
ontrastto a 
entralized approa
h, the de
entralized implementation has to balan
e between pre
iseand up-to-date information and in
reased network tra�
. Moreover, be
ause of the fully-distributed design, a
tions exe
uted by one node may invalidate the information 
olle
tedby others.3.4.1 Swarm intelligen
eSwarm intelligen
e is a �eld of arti�
ial intelligen
e that mimi
s the behavior of swarmsof inse
ts in order to solve 
omputationally intensive optimization problems [48℄ or toimplement 
olle
tive intelligent behaviors [36℄. Con
erning optimization tasks, a numberof di�erent te
hniques have been proposed, with the two most known being Parti
le SwarmOptimization (PSO) [76℄ and Ant Colony Optimization (ACO) [98℄. While PSO is moresuited for solving numeri
al problems, ACO naturally targets graph and network relatedtasks. A

ordingly, in the following we fo
us our attention on the latter, and brie�y dis
usshow distributed systems 
an bene�t from ant-inspired solutions.Ant 
olony optimization The ant 
olony optimization [98℄ (also known as ACO) meta-heuristi
 is an optimization te
hnique that repli
ates the behavior of ants sear
hing for food.An example of the foraging pro
ess is depi
ted in Figure 3.1. Ea
h ant starts from its nest,and randomly wanders in the environment, until a food sour
e is found. Subsequently, theinse
t returns to the nest, and lays a small amount of 
hemi
al pheromone to tra
e thepath from the nest to the food. Other individuals in the 
olony will sense the 
hemi
altrail and 
hoose to follow it to rea
h the food: on their way ba
k to the nest, they willa
tively reinfor
e the trail by depositing more pheromone. In this view, pheromone trailsrepresent a form of indire
t 
ommuni
ation between ants, 
alled stigmergy, to signal wherethe food is lo
ated. Ants are not for
ed to follow an existing trail: when an ant wandersin the environment it 
an 
hoose to either exploit an existing path, or randomly explorethe environment. If a trail is not reinfor
ed, it will disappear due to the evaporation of the
hemi
al. By default, in absen
e of pheromone trails, ant exploration will take pla
e.
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Figure 3.1: The ant foraging pro
essShortest paths that lead to the food sour
e naturally emerge from this pro
ess: be-
ause a short path takes less time to be traveled, the rate at whi
h pheromone trails arereinfor
ed is faster, thus the 
on
entration levels remains higher than in other paths. Be-
ause the 
on
entration of pheromone on the path also in
reases the attra
tiveness of ittoward wandering ants, a positive feedba
k 
y
le will be 
reated. Conversely, if a pathbe
omes ina

essible, evaporation will render it less desirable. A

ordingly, ACO exploitsan emergent and adaptive behavior.This pro
ess 
an be modeled by ant-like software agents and be used to �nd shortestpaths in graphs. More spe
i�
ally, in 
omputer s
ien
e, ACO has been used to solve NP-
omplete graph problems, su
h as the Traveling Salesman Problem [97℄. Consequently, anumber of other NP-
omplete problems have been solved using ACO by transforming theminto an instan
e of TSP.Appli
ation in Computer Networks Ant algorithms are of simple logi
 and inher-ently distributed, be
ause neither 
entral 
ontrol, nor dire
t 
ommuni
ation between agentsare required. The foraging behavior of ants has been exploited for implementing adaptiverouting algorithms, as shown in [170℄, or semanti
 resour
e dis
overy proto
ols [204℄. Fol-lowing the same prin
iples, the 
lustering behavior of the Messor San
ta spe
ies of ants ledto the development of fully distributed load balan
ing [210℄ or 
lustering [113℄ solutions.
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iples of ant 
olony op-timization in order to simplify the implementation of a distributed version of our overlayoptimization algorithm. In this respe
t, we deem that the fa
t that the ACO metaheuris-ti
 does not require dire
t intera
tion between agents 
an ease the development of fullydistributed algorithms.3.4.2 Distributed overlay optimizationThe overlay optimization pro
ess modi�es the logi
al 
onne
tions between nodes depend-ing on the obtained partial, transient information about the network. To 
olle
t su
h data,di�erent types of mobile agents (referred to as ants) are employed. In the spirit of swarmintelligen
e algorithms, the out
ome of the optimization pro
ess must not depend on indi-vidual agents but on the operation of a 
olony as a whole, that is the 
ollaborative a
tionsof multiple ants exe
uting on the overlay. In the following we detail the distributed imple-mentation of the optimization algorithm, whi
h 
omprises the data stru
tures maintainedby ea
h node, the semanti
 of ea
h ant spe
ies, and the behavior exe
uted by ea
h nodea

ording to the per
eived status of the network.3.4.3 Lo
al data stru
turesEa
h peer ni maintains a set Ni of addresses of other peers representing its neighborhood.The maximum number of neighbors is m, although the algorithm itself 
an only 
reate
mo 
onne
tions, mo ≤ m, during normal operations: the remaining free 
onne
tions arereserved for re
overy pro
edures. To avoid the 
reation of large hubs, the size of theneighbor set is typi
ally limited to small values < 10.With the ex
eption of the 
onne
tion phase, a node ni 
an only 
ommuni
ate withpeers in its neighborhood Ni. Furthermore, it is possible to make a distin
tion betweena
tive and ina
tive neighbors. A neighbor of ni is 
onsidered ina
tive until it has ex
hangedsome information with ni. We denote the fa
t that nj ∈ Ni is an a
tive neighbor of niwith ni ← nj ; inversely, an ina
tive neighbor is denoted as ni 6← nj . Be
ause a node 
anonly 
ommuni
ate with its neighbors, ni ← nj implies ni ∈ Nj .Along with the neighbor set, ea
h peer also keeps a �xed size 
a
he table (α), 
ontaininginformation about other peers of the network. Ea
h entry in the table has the form
〈nj, Nj , dj , tj , ti〉, where nj is the identi�er of the remote peer, Nj its neighbor set, dj theestimated distan
e from nj to ni, tj the time on nj when that information was retrieved,and ti the lo
al time of the last entry update. The remote time tj is used to determineif in
oming information is older than the 
urrent one, whereas ti is used to 
lean up oldentries when the table �lls up. The information found in the α table is highly volatile,and is 
ontinuously updated by ants traveling on the network. To support fault resilien
e,as long as nj ∈ Ni the entry 
orresponding to nj in αi 
annot be removed: this ensuresthat the last known neighbors of nj are always available and 
annot be overwritten. Anexample of an α table is given in Figure 3.4.3.



3.4. BlåtAnt-R 53Figure 3.2: Sample BlåtAnt-R α tableIdenti�er Neighbors Last Update Timestamp Distan
eA P,Q,K,L 87 101 4U E,F,B,W 89 85 53.4.4 Pheromone trailsAs previously dis
ussed, 
ommuni
ation between real ants o

urs using a stigmergi
 (i.e.indire
t) me
hanism whi
h involves leaving 
hemi
al pheromone trails in the environment.These 
hemi
al tra
es 
an be sensed by other individuals in the 
olony and their 
on
en-tration indi
ates the desirability of a given path. With time, unless new 
hemi
al is leftby an inse
t, the 
on
entration of the trail 
ompletely evaporates. Evaporation has theadded bene�t of seamlessly suppressing errors and over
oming bad system de
isions. Inour system, we emulate this phenomenon, and in that respe
t pheromone 
on
entrationsare represented as numeri
al values τ ∈ [0, 1] stored on ea
h node and asso
iated withpaths to neighbors in the overlay. Ants exe
uting on a node 
an both read the a
tual
on
entration of a trail, and reinfor
e it by in
reasing its value up to a maximum of 1.Ea
h node periodi
ally simulates evaporation by lowering the value of a trail τ a

ordingto an update fun
tion τ ← τ ∗ ψ, and ψ < 1. If the 
on
entration on a trail falls below athreshold ε, the trail is removed. We distinguish between in
oming β trails, and outgoing
γ trails. When an ant travels from node ni to a neighbor nj , the 
orresponding trail
γi[nj] on ni is reinfor
ed. Conversely, when the ant arrives on nj , pheromone trail βj [ni]is reinfor
ed.3.4.5 Ant spe
iesIn the 
onsidered framework, ant spe
ies des
ribe information 
ontainers that 
an be ex-
hanged between nodes and that trigger parti
ular response behaviors, su
h as 
reatingor removing overlay links. Ants 
an nonetheless be viewed as living entities that 
arryinformation, move a
ross the overlay, and perform spe
i�
 tasks proper to their spe
ies.More spe
i�
ally, BlåtAnt-R de�nes six di�erent spe
ies of ant agents:
− Dis
overy Ants are used to 
olle
t and spread information about the status of thenetwork (nodes and links). Ants wander a
ross the network and store data aboutea
h visited node nk represented as a triple 〈nk, timestampnk

, Nk〉 
ontaining thenode's identi�er, the remote timestamp at nk when the information was 
olle
ted,and its a
tual neighbors Nk. This triple is appended to a bounded-size ve
tor Vof maximal length lv. Visited nodes also re
eive the ve
tor 
urrently 
arried by theant, and use this information to update the lo
al view of the network (stored in the
α table). Depending on the position of ea
h entry in the ve
tor, a node 
an thusinfer an estimation of the distan
e of the node in the overlay. An entry in the ve
tor
orresponding to a node nj 
ontains the following information:� nj : identi�er of the visited node;� Nj : set of neighbors of nj ;
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Figure 3.3: BlåtAnt-R Dis
overy Ant wandering� timestampj : timestamp on nj when the information was 
olle
ted.Dis
overy Ants wander on the overlay following existing links between nodes. Atea
h step, an ant may 
hoose to either pro
eed on a random path (exploration)to one of nodes in the lo
al neighborhood set with probability κ, or sele
t a pathdepending on its a
tual pheromone 
on
entration (exploitation) with probability 1−

κ. More spe
i�
ally, paths with lower γ pheromone 
on
entration are preferably
hosen, ensuring a fair 
overage of the network. Visited nodes in V are avoided.Dis
overy Ants are responsible for 
ontinuously monitoring the state of the network,and have a limited lifespan π (maximum number of wandering steps). As Dis
overyAnts may get lost due to node 
rashes, at regular intervals ι a new individual isgenerated on every node with probability µ, ensuring the survival of the population.As the optimization task depends on the information gathered by Dis
overy Ants,running the algorithm with an empty population will prevent any improvement ofthe topology.An example of the behavior of a Dis
overy Ant is shown in Figure 3.3. The ant is 
re-ated and exe
utes initially on node R, then moves to E and �nally to S. A

ordingly,the information passed to ea
h of the nodes is as follows:� R re
eives ();� E re
eives (〈R, timestampR, {X,C,E}〉);� S re
eives (〈R, timestampR, {X,C,E}〉, 〈E, timestampE , {A,B,R, S}〉).The ant �nally 
olle
ts information on node S and 
ontinues its wandering.
− Constru
tion-Link Ants are sent by nodes wanting to join the network, but also dur-ing re
overy pro
edures. A node 
an either a

ept the 
onne
tion, or forward it to
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hosen amongst the ones with the smallest degree).Forwarding is required if the node has already rea
hed the maximum number ofallowed neighbors. To avoid long 
onne
tion delays, ea
h ant 
an only travel a max-imum number of steps clantttl: when the limit is rea
hed the 
onne
tion pro
eduremust be 
ompleted by the �rst visited node with a free slot. When node ni a

eptsa Constru
tion-Link Ant sent by nj , it adds nj to Ni and then sends the ant ba
kto nj , where ni is added to Nj .
− Optimization-Link Ants are instantiated by peers in order to optimize the diameterof the network. When a node ni wants to 
reate a 
onne
tion with nj it sends anant to it. At nj the ant 
he
ks the estimated distan
e to ni (in the αj table). Ifthe estimated distan
e is > 2D− 1, or no information is found in αj , the 
onne
tionpro
edure 
an 
ontinue. In this 
ase, ni is added to Nj , and the ant migrates ba
kto ni, where nj is �nally added to Ni.
− Unlink Ants remove the links as result of the appli
ation of the dis
onne
tion rule orwhen nodes leave the overlay. When a node ni wants to dis
onne
t nj ∈ Ni, it �rstremoves nj from Ni, and then sends an Unlink Ant to nj in order to remove ni from
Nj .

− Update Neighbors Ants notify a node when one of its neighbors has 
hanged its neigh-bors set. This ensures that ea
h node is able to re
over from abrupt dis
onne
tionof a neighbor by 
onne
ting with its last known neighbors. Update Neighbors Ants
arry the list of the neighbors Ni from the sour
e node ni, and update the entry
orresponding to ni in the αj table of ea
h target neighbor nj ∈ Ni.
− Ping Ants are used to keep 
onne
tions between nodes alive by reinfor
ing pheromonetrails on visited nodes. Abrupt node dis
onne
tion 
an be dete
ted by monitoringthe 
on
entration of β trails: when values approa
h a lower threshold a re
overy pro-
edure is started. If appli
ation tra�
 is low, the trail between two nodes may notbe frequently reinfor
ed, and thus 
ompletely evaporate even though the 
orrespond-ing nodes are still 
onne
ted to the overlay. To prevent this from happening, PingAnts are periodi
ally deployed as soon as trail 
on
entration falls below a 
ertainthreshold.3.4.6 Fault resilien
eDis
onne
ting from the overlay 
an o

ur either properly or improperly. Proper dis
onne
-tions require the leaving node to inform all of its neighbors and initiate a re
overy pro
edureto ensure 
onne
tivity is preserved. This pro
edure involves sending out Constru
tion-LinkAnts to all neighbors and 
onne
ting them using a ring topology (Figure 3.4). Improper orabrupt dis
onne
tions o

ur when a node stops 
ommuni
ating with its neighbors, eitherbe
ause of a 
rash or be
ause of network issues. In this situation, ea
h neighbor starts there
overy pro
edure on its own as soon as the failure is dete
ted (by means of monitoringthe 
on
entration of β pheromone).
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onne
tion: Leaving pro
edure When a peer wants to quit the network,it must ensure that all of its neighbors remain 
onne
ted. When node ni leaves the network,it �rst sends an Unlink Ant to all of its neighbors. Next, it sends a Constru
tion-Link Antto all its neighbors in order to 
reate a ring 
onne
ting all of them. Figures 3.4a) and 3.4b)depi
t an example topology before, respe
tively after the departure of node ni.
Figure 3.4: Leaving pro
edureImproper dis
onne
tion (
rash): Re
overy pro
edure The re
overy pro
edure isused to prevent network partitioning in the event of a node 
rash. When a node njdete
ts the departure of one of its neighbors ni by sensing the 
omplete evaporation ofits β pheromone trail, it may start a re
overy pro
edure. The exa
t behavior of the nodedepends on whether nj 6← ni or nj ← ni.

− if nj 6← ni no information was ever re
eived from this 
onne
tion. This situation 
aneither happen when a node leaves just after being 
onne
ted, or when a 
onne
tionpro
edure is interrupted. In su
h 
ases, ni is just removed from Nj .
− if nj ← ni some data was already su

essfully ex
hanged through this 
onne
tion.It is thus ne
essary to ensure that 
onne
tivity of the network is preserved by ex-e
uting the re
overy pro
edure. This pro
edure involves removing ni from Nj andsubsequently send Constru
tion-Link Ants to all last known neighbors of ni in orderto 
onstru
t a ring topology as in Figure 3.4. In 
ontrast to a proper dis
onne
tion,the re
overy pro
edure is started by all neighbors of ni, as soon as the failure has beendete
ted: although this 
an in
rease network overhead (proportionally to the size ofthe neighborhood set), ea
h neighbor must initiate the re
overy pro
ess be
ause it
annot assume that other did or would do it.3.4.7 Optimization rules evaluationDuring its lifetime, ea
h node ni re
eives information from Dis
overy Ants, and 
orrespond-ingly updates its lo
al αi table. Ea
h triple in the ant ve
tor V updates the 
orrespondingentry in the αi table; if no su
h entry exists, a new one is 
reated. When the table rea
hesits maximum 
apa
ity, as well as after a 
ertain amount of time, the least re
ently updatedentries are repla
ed. To solve 
on�i
ts when re
eiving 
on
urrent information about thesame node, the remote timestamp in the table and in V are used. At regular intervals ωthe 
ontents of the table and the neighbor set are used to 
onstru
t a partial graph of thenetwork and evaluate the Dis
onne
tion Rule and the Conne
tion Rule. All dis
onne
ted
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omponents that 
annot be rea
hed from ni, as well as 
omponents 
onne
ted by meansof non-bidire
tional paths are removed from the graph.Evaluating dis
onne
tions For dis
onne
tions, node ni 
omputes the shortest pathsnot traversing ni between ea
h pair of neighbors nj, nk ∈ Ni. The shortest path is thensele
ted, and if its length is less than 2D− 2, ni initiates a dis
onne
tion (by means of anUnlink Ant) from either nj or nk: in parti
ular, the neighbor with the highest degree isdis
onne
ted, in order to promote a more balan
ed link distribution.Evaluating 
onne
tions To evaluate new 
onne
tions, node ni determines the distan
eto all nodes nz 6∈ Ni, and initiates a 
onne
tion pro
edure with the farthest node (bysending an Optimization-Link Ant) if its distan
e is ≥ 2D − 1. Nodes that are being
onne
ted are marked, so that subsequent rule evaluation will ignore them. Furthermore,all 
omputed distan
es are used to update the 
orresponding distan
e �eld in the α table.Example Figure 3.5 illustrates an example of the rules evaluation pro
edure: the 
on-tents of the α table for node A, the neighbor set NA, as well as the 
orresponding partialgraph are shown. Node K is removed from the partial graph be
ause there is no edgefrom B to K; 
onversely, nodes J,L, V are removed be
ause they belong to a dis
onne
ted
omponent. To evaluate the dis
onne
tion rule the distan
e between C,E,Z along pathsthat do not traverse A is 
omputed. A

ordingly, a path of length 5 hops 
onne
ts nodes
E and Z, and depending on the value of D either one of the nodes along this path 
ouldbe dis
onne
ted. Conversely, for evaluating the 
onne
tion rule, the distan
e to nodes thatare not within the neighbor set is 
omputed. The obtained value is used to update theestimated distan
e �eld in the α table (for the entry 
orresponding to the 
onsidered node),and eventually triggers a 
onne
tion pro
edure.

NA = {C,E,Z}

αA (timestamps omitted)identi�er neighbors distan
eZ A,F,P,Q 1E A,R,S,B 1B E,N 2F Z,T 2T F,N 3K B 3N B,T,Y 3V L,J 3Figure 3.5: BlåtAnt-R Rules Evaluation3.5 BlåtAnt-SBlåtAnt-S is the third implementation of the algorithm that fo
uses on simpli
ity byredu
ing both the 
omputational 
omplexity and the amount of information ex
hanged
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Figure 3.6: BlåtAnt-S Dis
overy-S Ant wanderingbetween nodes. It is noteworthy to say that the solution proposed by this version is notmeant to repla
e the −R one, but it is to be 
onsidered as an alternative implementationbased on the same optimization rules. In this se
tion the di�eren
es between BlåtAnt-Sand BlåtAnt-R will be highlighted.3.5.1 Ant spe
iesThe only di�eren
e of the −S version 
ompared to the −R one is in the amount of infor-mation 
olle
ted and 
arried by Dis
overy Ants. In parti
ular, the latter 
arry a bounded-length ve
tor V that 
ontains only the identi�er of the nodes visited by the ant. In 
ontrastto the −R version, no other information about the neighbors is 
olle
ted, thus the tra�
generated by Dis
overy Ants is 
onsiderably lower. In the following, Dis
overy Ants usedby the -S version of the algorithm will be referred to as Dis
overy-S Ants. The exam-ple depi
ted in Figure 3.6 shows an ant traveling from R to S, passing through E. Theinformation passed to ea
h of the nodes is as follows:
− R re
eives ();
− E re
eives (〈R〉);
− S re
eives (〈R〉, 〈E〉).The ant then adds the identi�er of node S at the end of its ve
tor, and 
ontinues itswandering around the network.3.5.2 Optimization rules evaluationThe evaluation pro
ess is performed ea
h time a Dis
overy Ant-S visits a node and uploadsits information ve
tor. Distan
e estimations are 
omputed on the base of the relativedistan
e between identi�ers in the ve
tor, rather than through the 
onstru
tion of a graph.This estimation is used both for evaluating the optimization rules, as well as to update the
orresponding �eld in the α table. The 
omplexity of evaluating the optimization rules thus
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es from O(n2) in BlåtAnt-R to O(n) in BlåtAnt-S. On the downside, distan
eestimations are less pre
ise and more errors are inevitable.Evaluating dis
onne
tions Nodes �rst identify all pairs of neighbor's identi�ers withinthe information ve
tor V , and then 
ompute the absolute value of the di�eren
e betweenthe positions of the identi�ers of ea
h pair in the ve
tor. If the identi�er of the nodeappears between the pair of neighbors, their distan
e is set to ∞. The dis
onne
tion ruleis then applied on the pair of neighbors with the smallest in-between distan
e in the ve
tor.Evaluating 
onne
tions A node ni evaluates the distan
e to any other node nk 6∈ Niby 
al
ulating the absolute value of the di�eren
e between the position of the target'snode identi�er and either the 
losest neighbor nj ∈ Ni identi�er, or the tail of the ve
tor,whi
hever value is smaller. This evaluation is stored in the α table. Periodi
 evaluation ofthe 
onne
tion rule o

urs at intervals ω, and might subsequently trigger the 
reation of anew link. To prevent blatant errors, the list of neighbors of neighbors stored in the table isused to adjust distan
es if ne
essary: more spe
i�
ally, if a node appears to be 
onne
tedto a neighbor, its distan
e is automati
ally set equal to 2.Example Figure 3.7 illustrates an example of the rules evaluation pro
edure triggeredby the re
eption of an information ve
tor on node F . We suppose that the neighbors ofnode F are A and M , and the ve
tor 
arried by the in
oming Dis
overy Ant-S 
ontains
{U,M,O, S,E,W,A}, where A is the last node visited by the ant prior to F . To evaluatedis
onne
tions, the distan
e between neighbors A and M in the ve
tor is 
onsidered: inthe example, their distan
e is 5. Conversely, for 
onne
tions, the distan
es between nodes
W,E,S,O and either A,M or the end of the ve
tor are 
omputed. A

ordingly, thedistan
es are of 2 and 3 hops, for nodes W,O,U , respe
tively E,S.

NF = {A,M} Dis
overy Ant Ve
torU M O S E W AFigure 3.7: BlåtAnt-S Rules Evaluation on node F3.6 EvaluationBy means of extensive experimentation of BlåtAnt-R and BlåtAnt-S, we aim at eval-uating their behavior along di�erent axes. More spe
i�
ally, both the properties of theresulting networks as well as the robustness of the algorithm need to be assessed. A

ord-ingly, in this se
tion we present the 
onsidered measurements and the 
orresponding tests
enarios, a summary of whi
h is provided in Table 3.1.Important measurements for evaluating the optimization pro
ess are the diameter, theaverage path length, the number of (dire
ted) edges in the overlay, the degree distribution,and the number of 
y
les as well as their length. While the diameter and average pathlength assess the 
apa
ity of the algorithm to bound the maximum distan
e between anypair of peers, values 
on
erning 
y
les quantify the girth of the graph and the amount



60 Chapter 3. BlåtAnt Algorithmof redundant paths on the overlay. In addition, we deem the degree distribution and thenumber of edges useful for determining the presen
e of hubs, respe
tively the 
omplexityof the resulting network.BlåtAnt-R and BlåtAnt-S are 
ompared to highlight their bene�ts and drawba
ks;in parti
ular, we aim at understanding if the in
reased 
omplexity of the -R version providesadvantages over the simpler distan
e estimation logi
 implemented by the -S version.S
enario Fo
us of the evaluationA Convergen
e in a stable overlayB AdaptivenessC S
alabilityD Overlay fault resilien
eE Communi
ation fault toleran
eF SensitivityG Comparison with News
ast and GnutellaTable 3.1: Summary of overlay evaluation s
enarios3.6.1 Simulation setupAll evaluation s
enarios are exe
uted on a 
ustom dis
rete-time simulator with a resolutionof 50 ms that enables a

urate measurements of the aforementioned variables. Communi-
ation delays between peers are determined by an underlying topology of 3037 nodes and
4788 links 
reated with i-net 3.0 [295℄. The average path length is of 3 hops, and theaverage laten
y on ea
h link is 78 ms. The topology is depi
ted in Figure 3.8.

Figure 3.8: Underlying topologyUnless otherwise spe
i�ed, in all s
enarios an overlay of 1281 nodes is 
onstru
ted; 10nodes out of 1281 
onstitute the well-known 
onne
tion points of the overlay, whi
h arelinked together with random 
onne
tions. At the beginning of the simulation, the remaining
1271 nodes initiate a 
onne
tion pro
edure by sending a Constru
tion-Link Ant to one ofthe well-known peers (
hosen uniformly at random). Unless otherwise spe
i�ed, in dynami
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enarios the number of nodes varies during exe
ution, as nodes joining and leaving theoverlay are simulated in the interval between 6 hours and 9 hours into simulations, with arate of one node added and one removed every 4 se
onds. In this regard, two dis
onne
tionstrategies have been 
onsidered, proper and improper, with the probability of an improperdis
onne
tion being 50%. The referen
e parameter values used during all simulations,unless otherwise stated, are detailed in Table 3.2. A

ording to the rewiring algorithmperformed by BlåtAnt, the 
hoi
e of the optimization parameter D = 5 aims at obtaininga diameter ≤ 2D − 2 = 8 and a girth ≥ 2D = 10.A sensitivity analysis of some of these values is detailed in the following. To obtainstatisti
ally representative data, 5 simulation runs for ea
h s
enario are performed. Ea
hrun simulates an exe
ution of 12 hours, whi
h in
ludes the time required to initially setupthe overlay. A baseline for 
omparison for all 
onsidered values is represented in a referen
es
enario, that is used in our sensitivity analysis in s
enarios of set F.Value Des
ription
D 5 Optimization parameter
⌈|α|⌉ 28 Maximum number of entries in the α table of ea
hnode
⌈αage⌉ 300 Maximum age for valid entries in the α table (in se
-onds); entries older than this value are removed fromthe table
m 8 Maximum node degree (number of neighbors)
mo 6 Maximum number of allowed 
onne
tions 
reated byOptimization-Link Ants
ι 100 Dis
overy Ants respawn interval (in se
onds)
π 25 Maximum number of hops that Dis
overy Ants 
antravel in the network
µ 5% Dis
overy Ants respawn probability
lv 15 Dis
overy Ants information ve
tor maximum length
ε 0.02 Minimum pheromone 
on
entration (for both β and γ)
ψγ 0.02

1

300 γ pheromone de
ay (applied every 100ms, 
orrespondsto a 
omplete evaporation in 30 se
onds)
ψβ 0.02

1

600 β pheromone de
ay (applied every 100ms, 
orrespondsto a 
omplete evaporation in 60 se
onds)
κ 50% Dis
overy Ants exploration probability
ω 1 Rules evaluation period (in se
onds)
clantttl 10 Maximum number of hops for Constru
tion-Link AntsTable 3.2: Summary of overlay evaluation parametersTo provide a simple baseline for 
omparison with di�erent overlay management al-gorithms, simulations in s
enario G experiment with topologies 
onstru
ted using theNews
ast [158℄ epidemi
 algorithm and a Gnutella algorithm. Con
erning News-
ast experiments, ea
h node maintains a 
a
he table of 20 entries, whi
h is merged withother peers every 10 minutes on average, whereas in Gnutella runs ea
h node maintainsat most 10 neighbors (an ex
eption is made for well-known nodes), and ping messages are
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onds at a distan
e of 7 hops in the overlay to at most 4 neighbors atea
h step. Dynami
 network 
hara
teristi
s are simulated as in BlåtAnt dynami
 s
enar-ios, with nodes joining and leaving the overlay in the interval between 6 hours and 9 hoursin to the simulations, with a rate of one node joining and one leaving every 4 se
onds. Thesize of the 
a
he in News
ast is derived from the experiments detailed in [286℄, and themerge frequen
y has been 
hosen in order to obtain a su�
iently stable overlay without
ompromising its fault resilien
y.3.6.2 Tra�
 estimationBesides the qualities of the resulting network, another important measure is the tra�
generated by the algorithm. By determining the amount of ant agents employed by thealgorithm, the overall 
onsumed bandwidth 
an be determined. Con
retely, the 
ommuni-
ation 
ost for transferring ea
h spe
ies of ant between two nodes in the overlay has beenestimated as follows:
− Dis
overy Ant : 388 bits plus 144 bits/visited node in BlåtAnt-S; 388 bytes plus 176bits/visited node plus 144 bytes per ea
h neighbor of a visited node in BlåtAnt-R;
− Constru
tion-link Ant : 532 bits;
− Optimization-link Ant : 532 bits;
− Unlink Ant : 532 bits;
− Update Neighbors Ant : 532 bits plus 144 bits/neighbor;
− Ping Ant : 532 bits.These estimations are based on the a
tual information 
arried by ea
h ant, and in
ludeboth the size of an IPv6 header (320 bit), a UDP header (64 bit), as well as a 4 bitspa
ket type identi�er and 144 bits sour
e identi�er (128 bits IPv6 identi�er plus 16 bitsport number). For visited nodes, the assumed 144 and 176 bits 
omprise 128 bits for theIPv6 address, 16 bits for the port number, and 32 bits (BlåtAnt-R only) for the remotetimestamp. It is noteworthy to say that the provided results refer only to the 
ase whereno appli
ation tra�
 is produ
ed, thus the number of Ping Ants might be higher than inreal situations and thus represents an upper bound rather than a typi
al value. Low-levelnetwork pings a

ount for 224 bits.In News
ast simulations, the size of ea
h ex
hanged entry in 
a
he tables is estimatedat 176 bits, 
omprising of 128 bits for the address, 16 bits for the port number and 32bits for the timestamp. The base 
ost of a merge operation is assumed to be 532 bitsper transmission (ea
h merge involves 2 transmissions) plus the 
ost of transmitting ea
hentry.In Gnutella simulations the 
ost of a ping message is 184 bits (the size of the messageheader a

ording to proto
ol version 0.4 [3℄), whereas a pong message weights 296 bits (ofwhi
h 184 bits 
on
ern the proto
ol header). For simpli
ity, we assume here that messagesare transmitted using UDP instead of TCP, thus an overhead of 384 bits per pa
ket is
onsidered. A

ordingly, for 
onne
tions, the overall amount of the data ex
hanged isassumed to be 280 bits, and two pa
kets are used.
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enario detailsIn the following we present the details of ea
h evaluation s
enario, and highlight the pa-rameter values that have been 
onsidered for both a performan
e and a sensitivity analysis.The 
orresponding results are presented in Se
tion 3.7.A - Convergen
e of the optimization pro
ess To evaluate the fully distributedoptimization pro
ess implemented by BlåtAnt-R and BlåtAnt-S, a set of experimentswith reliable 
ommuni
ation was 
onsidered. On
e 
onstru
ted, the 1281 nodes 
omposingthe network are not modi�ed, allowing the exe
ution of the algorithm in a stati
 situation.A

ording to the value of optimization parameter D = 5, su

essful optimization of theoverlay should lead to a diameter ≤ 8, and a girth ≥ 10. These experiments also provide auseful insight on the the disadvantages in
urred running the optimization pro
ess lo
allyon ea
h node without global and reliable information, and highlight the di�eren
es betweenthe two versions of the algorithm.B - Adaptiveness In the previous se
tions, the ability of the algorithm to adapt todi�erent network situations has emerged as an important feature. A

ordingly, we exam-ined the behavior of both versions of the algorithm in di�erent dynami
 s
enarios, withthe goal of determining the rea
tivity of the system to 
hanges in the overlay su
h as theaddition or removal of nodes. Experiments in set B simulate a dynami
 network wherenew nodes 
onne
t to the overlay and subsequently dis
onne
t from it. The dis
onne
tionshappen 
leanly, with nodes quitting the network ensuring proper 
onne
tivity by exe
utingthe leaving pro
edure. In 
ontrast to other s
enarios, during simulations, nodes are addedand removed in the period between 30 minutes and 6 hours into simulation, a

ording toa Poisson pro
ess with an average rate of one 
onne
tion and one dis
onne
tion every 4se
onds.C - S
alability In the same spirit as in the previous s
enario, s
alability experiments ins
enario C aim at assessing the response of the algorithm in a growing network, where newnodes periodi
ally join-in at a rate of a node added every 2 se
onds, from 30 minutes upuntil 6 hours into simulation. Nodes send their 
onne
tion request (using a Constru
tion-Link Ant) to one of the well-known nodes. The �nal size of the network, after the expansionphase, is of 10620 nodes.D - Overlay fault resilien
e The fault resilien
e of BlåtAnt overlays is evaluated inexperiments of s
enario D, with nodes joining the network and nodes leaving it improperlywithout informing neighbors, hen
e simulating a 
rash or an unexpe
ted failure. In this
ase, we expe
t a re
overy pro
edure to be initiated by nearby nodes. As with s
enariosin B, during the dynami
 part of the simulation nodes are also added to the system. Morespe
i�
ally, additions and removals are performed between 30 minutes and 6 hours intosimulation, a

ording to a Poisson pro
ess with an average rate of one 
onne
tion and oneimproper dis
onne
tion every 4 se
onds.Furthermore, high-
hurn was simulated to determine the robustness of the overlay inthe event of sudden dis
onne
tion of a large portion of the nodes. To evaluate su
h high-
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hurn situations, random sets of nodes are removed from the overlay at 60 minutes intosimulation, and the size of the largest 
onne
ted 
omponent in the overlay is measured;more pre
isely, we 
onsider the 
on
urrent removal of 50, 100, 250, 500, 750 and 1000 nodessele
ted uniformly at random out of the initial 1281. All nodes are dis
onne
ted withoutperforming a proper leaving pro
edure, thus 
onne
tivity has to be ensured by re
overypro
edures started by surrounding nodes.E - Communi
ation fault toleran
e An important aspe
t of a fully distributed algo-rithm, is its ability to avoid disastrous 
onsequen
es in the presen
e of minor 
ommuni-
ation errors. In this regard, in s
enario E the fault toleran
e 
hara
teristi
s of BlåtAntare determined by simulating pa
ket delay and pa
ket loss. Spe
i�
ally, ea
h ant has a
2% 
han
e of getting lost migration, and 20% 
han
e of being delayed by 2500ms (thuspreventing FIFO 
ommuni
ation between nodes). Con
erning the dynami
s of the net-work, this set of experiments assess the performan
e of BlåtAnt in 
omparison to s
enariosA, B, and D (namely stable network 
onditions, dynami
 network 
onditions with properdis
onne
tions, and dynami
 network 
onditions with inproper dis
onne
tions).F - Sensitivity A number of parameters in�uen
e the behavior of the algorithm and itsperforman
e. Hen
e, it is important to understand how ea
h value modi�es the out
ome ofthe optimization pro
ess, the robustness of the overlay against failures, and the 
onsumedbandwidth. The baseline for this 
omparison is a dynami
 network s
enario as des
ribedin se
tion 3.6.1. From this perspe
tive, s
enario F experiments with di�erent values forea
h important parameter, more spe
i�
ally:
− F0 - Baseline s
enario: the baseline for 
omparison is determined by a dynami
s
enario where the default parameter values, as des
ribed in the previous se
tions,are used. In parti
ular, the optimization parameters D is set to 5, hen
e the expe
tedupper bound for the diameter is 2D − 2 = 8, whereas the lower bound for the girthis 2D = 10. The birth probability for Dis
over Ants is 5%, and ea
h ant 
arries ave
tor of at most 15 entries, for at most 25 hops in the overlay. At ea
h wanderingstep, Dis
over Ants have a 50% of probability of following a random path instead ofthe one asso
iated with the lowest γ pheromone 
on
entration. Finally, ea
h nodeis allowed to 
reate at most 6 
onne
tions with other nodes by means Optimization-Link Ants, out of a total of 8 
onne
tions, and the α table on ea
h node is allowedto 
ontain a maximum of 28 entries.
− F1 - Optimization parameter D: in this s
enario we fo
us on how the optimiza-tion parameter D a�e
ts the 
hara
teristi
s of the resulting overlay, by experimentingwith di�erent values: 3, 4, 6 and 7 (
ompared to D = 5 being the default value usedin the referen
e s
enario and throughout the rest of the simulation s
enarios). Theexpe
ted upper bounds for the diameter, 2D − 2, are thus 4, 6, 8 and 12; 
onversely,the lower bounds for the girth, 2D, are 6, 8, 12 and 14.
− F2 - Dis
overy Ant birth probability µ: the goal is to understand how thenumber of Dis
over Ants, thus the amount of information ex
hanged by nodes, a�e
tsthe 
onvergen
e rate and the quality of the overlay. In this regard, the probability
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µ of ea
h node generating a Dis
overy Ant at intervals of ι = 300 se
onds is variedfrom 5% (the default value used in all other s
enarios), to 7.5%, 1%, and 0%. Inthe latter 
ase, the optimization pro
ess is a
tually disabled, as it depends on theinformation provided by Dis
overy Ants.

− F3 - Maximum length lv of the information ve
tor: these experiments aimat understanding the in�uen
e of the amount of information 
arried by Dis
overyAnts on the optimization pro
ess. Herein, the upper bound for the length of theinformation ve
tor lv is 
hosen to be either 12, or 17 (15 being the default value).Eventual bene�ts of additional information are to be assessed in the light of thein
reased generated tra�
.
− F4 - Maximum number of allowed Dis
overy Ant hops π: 
onversely toprevious experiments, we assess here the in�uen
e of the maximum number of hops
π that Dis
overy Ants are allowed to travel in the overlay before being dis
arded.The 
onsidered values are 15, 25 (the default), 50, and 100.

− F5 - Maximum per-node degree mo: to determine how mu
h the optimizationpro
ess depends on the 
onstraint on the maximum per-node degree, in these exper-iments the value of mo is 
hosen as either 4 or 8, 
ompared to 6 in the referen
eexperiments. The general maximum node degree m is left equal to 8.
− F6 - Exploration versus Exploitation: the tradeo� between exploration andexploitation is assessed by varying the probability κ of a Dis
overy Ant following arandom path, whi
h is 
hanged from the default value of 50% to 0%, 25%, 75%, and

100%.
− F7 - Size of the α table: we assess the in�uen
e of the amount of informationstored by ea
h node in its lo
al α table by varying its size from the default 28 entries,down to 20 and up to 36.G - Comparison with News
ast and Gnutella To understand how BlåtAnt
ompares with existing unstru
tured overlay management algorithms, s
enario G detailsthe behavior of News
ast and Gnutella in the same network 
onditions as the referen
eevaluation in s
enario F0. More spe
i�
ally, di�erent measurements will be 
ompared, asfor example the average path length, the amount and type of 
y
les in the graph, and the
onsumed bandwidth.3.7 ResultsIn this se
tion the results obtained by both versions of the algorithm in the aforementioneds
enarios are presented and dis
ussed. The qualities of the algorithms are analyzed withrespe
t to the requirements and goals de�ned at the beginning of this 
hapter. Con
erningthe edge 
ount, results refer to the number of out-links, determined by the size of theneighborhood set of ea
h node.
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e of the optimization pro
essBlåtAnt-R BlåtAnt-S

(a) Diameter, average path length, edge 
ount

(b) Graph 
y
lesFigure 3.9: A - Convergen
e of the optimization pro
ess (diameter and 
y
les)The results shown in Figure 3.9 demonstrate the 
onvergen
e of the diameter (a) and thenumber and length of 
y
les (b) in both the BlåtAnt-R and the BlåtAnt-S simulations.With both algorithms, the average path length 
onverges toward 6, well under the boundof 2D − 2 = 8; with the -S version this 
onvergen
e is slower, and the resulting graphexhibits a slightly higher number of edges, namely an average of 7643 links at the end ofthe simulation for BlåtAnt-S versus 7438 for BlåtAnt-R. This result 
an be attributedto the lower a

ura
y of algorithm -S, whi
h has more di�
ulty �nding 
orre
t distan
eestimations. The ina

ura
ies of the -S version are even more evident when the lengths of
y
les are 
ompared: with the -R version, the number of large 
y
les (of length larger than
6) is signi�
ant, whereas with the -S version su
h 
y
les are almost non-existent. From thispoint of view, neither algorithm is able to ful�ll the optimization goal of a girth ≥ 10; it isnonetheless noteworthy to mention that both versions are able to limit the number of small
y
les (of length up to 4), and maintain an average 
lustering 
oe�
ient 
lose or equal to 0in all simulation runs. A 
omparison between the rate of the emergen
e of large 
y
les andthe rate of 
onvergen
e of the average path length also hints at a slight relation between
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y
les are broken and only the larger ones are left, Dis
overy Ants areless likely to wander on redundant paths. A positive feedba
k 
y
le is thus 
reated, andbene�ts more pre
ise distan
e estimations whi
h 
onsequently lead to better de
isions inthe optimization pro
ess.BlåtAnt-R BlåtAnt-S

(a) Degree distribution

(b) Network tra�


(
) Network stabilityFigure 3.10: A - Convergen
e of the optimization pro
ess (degree, tra�
, and stability)
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ts the evolution of the degree distribution and the bandwidth
onsumed by both algorithms. Con
erning the degree, the limit of 6 neighbors per nodeis rea
hed by a very large fra
tion of the nodes (> 80%) in both algorithms, indi
atingthat the upper bound mo is an important parameter for limiting the number of edgesin the resulting overlay. BlåtAnt-S nonetheless shows a slightly worse performan
e,with an average of 95% of the nodes having a degree of 6 or higher, 
ompared to 85% ofthe nodes in BlåtAnt-R. The small number of nodes with a degree higher than 6 
an beattributed to well-known nodes that are subje
t to a higher number of in
oming 
onne
tionrequests. Con
erning the network 
ost, as expe
ted algorithm -S generates less tra�
 than-R be
ause of the small amount of information 
arried by Dis
overy Ants. More pre
isely,the former algorithm 
onsumes 160 kbps on average, whereas the latter 
onsumes 310 kbps.The �nal measure we take into a

ount 
on
erns the stability of the algorithm in termsof the average number of links that are 
hanged every se
ond in the overlay. Surprisingly,as shown in Figure 3.10 (
), the in
reased a

ura
y in the distan
e evaluation pro
ess ofBlåtAnt-R does not seem to lead to an in
rease in stability: whereas the -S versionmodi�es an average of 0.20 links per se
ond (after the initialization phase), the -R versionmodi�es 0.79 links/se
ond. The reason for the unexpe
ted more stable behavior of the -Sversion is due to the larger number of edges, whi
h limits the possibility of 
reating a largenumber of new links when the network be
omes saturated.3.7.2 B - AdaptivenessBoth algorithms are able to 
ontrol dynami
 situations, with nodes 
onne
ting and dis-
onne
ting at 4 se
onds intervals, by maintaining a diameter value slightly higher than theupper bound (2D − 2 = 8), as shown in Figure 3.11 (a) (verti
al lines are used to markthe start and end of the dynami
 part of the simulation). However, the behavior related tothe lower bound of the girth in the dynami
 phase of the simulation is noti
eably di�erent:with the -S version the number of large 
y
les is signi�
antly redu
ed, while with the -Rmany 
y
les of length greater or equal to 6 are present. These results further highlightthe bene�ts of a more a

urate distan
e evaluation in dete
ting and removing small 
y
les,and therefore redundant paths in the overlay.With regards to the data ex
hanged by nodes during the simulations, detailed in Figure3.11 (
), it is possible to note the 
ontrasting behavior of the -R and -S versions: while inthe former the 
onsumed bandwidth de
reases during the dynami
 phase (from an averageof 310 kpbs, as observed in s
enario A, to 285 kbps), in the latter it in
reases substantially(from 160 kbps to 220 kbps). With the -R version, the tra�
 redu
tion 
an be attributedto the diminished number of Dis
overy Ants, as well as Ping Ants, that are lost on nodesdis
onne
ting from the network. This redu
tion is signi�
ant, and 
ompensates for thein
rease of the Optimization-Link Ant, Unlink Ant, and Update Neighbors Ant populations.On the 
ontrary, with the -S version the bene�ts of a redu
ed population of Dis
overy Antsare less evident, thus the tra�
 is heavily in�uen
ed by the additional required spe
ies thatare instan
ed to 
onne
t new nodes and ensure 
onne
tivity a
ross the overlay.
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(a) Diameter, average path length, edge 
ount

(b) Graph 
y
les

(
) Tra�
Figure 3.11: B - Adaptiveness (diameter, 
y
les and tra�
)3.7.3 C - S
alabilityAs shown in Figure 3.12 (a), both the -R and the -S version of the algorithm are able toa

ommodate the additional nodes that 
onne
t to the overlay during the expansion period



70 Chapter 3. BlåtAnt Algorithm(from 30 minutes until 6 hours into simulation) that made up the �nal overlay 
omposedof 10620 nodes as well as 64555 and 65673 edges in the -R and -S version respe
tively. Thediameter and average path length in the -S algorithm are more unstable than in the -Rduring the expanding phase of the simulation; nonetheless, both algorithms maintain theaverage path length 
loser to the user de�ned target 2D − 2 = 8. Similarly, the numberof 
y
les (Figure 3.12 (b)) of length 4 and 5 is 
onsiderably higher with the −S version,whi
h 
on�rms the eviden
e found in the previous s
enarios that the latter exe
utes a lessa

urate optimization pro
ess.An analysis of the bandwidth 
onsumed by both algorithms, illustrated in Figure3.12 (
), shows an expe
ted signi�
ant growth in the tra�
 generated by Dis
overy andDis
overy-S ants. More spe
i�
ally, the overall tra�
 required to maintain the �nal overlayof 10620 nodes is 2670 kbps with BlåtAnt-R, and 1390 kbps with BlåtAnt-S, whi
hs
ales proportionally to the size of the network (as ea
h node has a 5% probability ofgenerating an ant every 100 se
onds).3.7.4 D - Overlay fault resilien
eOverlay fault resilien
e des
ribes the ability of the algorithm to respond to node failuresthat result in abrupt dis
onne
tions without 
ompromising the 
onne
tivity of the overlay.Figure 3.13 details the results pertaining to the diameter, edge 
ount, and average pathlength obtained in our simulation where new nodes 
onne
t to the overlay, and existingnodes unexpe
tedly stop intera
ting with other nodes and dis
onne
t from the network atintervals of 4 se
onds from 30 minutes to 6 hours into the simulation. In all experiments,the overlay remains fully 
onne
ted, thanks to the emergen
y re
overy pro
edures thatare started by the neighbors of leaving nodes. The re
overy a
tivity is highlighted by thein
reased tra�
 generated by Constru
tion-Link Ants. Results 
on
erning the 
y
les inthe graph, as well as the generated tra�
, re�e
t those obtained in s
enario B, with onlya slight in
rease in the number of Constru
tion-Link Ants.The behavior of the algorithm in the event of a failure of a large portion of the nodesis shown in Figure 3.14 (a)(b)(
). The results prove the ability of both BlåtAnt-Rand BlåtAnt-S to 
ope with su
h extreme situations without 
atastrophi
 
onsequen
es,su
h as a partitioning of the overlay, even when 750 out of 1281 nodes are simultaneouslydis
onne
ted (hen
e results for 
on
urrent dis
onne
tion of 25, 50, 100, 250, and 500 nodesare omitted). When 1000 nodes are dis
onne
ted the network be
omes slightly partitioned,with the size of the largest partition being about 280 nodes (out of 281) on average withBlåtAnt-S and 276 with BlåtAnt-R.3.7.5 E - Communi
ation fault toleran
eSurviving the loss of information during 
ommuni
ation is another important aspe
t ofthe robustness of a distributed system. The results of the experiments repli
ating the
onditions de�ned in s
enarios A,B, and D are depi
ted in Figure 3.15, 3.16, and 3.17respe
tively. The obtained results show that both the -R and the -S versions of thealgorithm are able to manage loss of information transmitted over the network (namely,ant agents) and 
ommuni
ation delays, and maintain the diameter bounded; however,it should be noted that small average path lengths and diameter are mostly due to the
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(a) Diameter, average path length, edge 
ount

(b) Graph 
y
les

(
) Tra�
Figure 3.12: C - S
alability (diameter, 
y
les, and tra�
)ex
essive number of links that are erroneously 
reated by the algorithm, rather than beingthe result of a 
ontrolled behavior. During the dynami
 phase, with proper and improperdis
onne
tions, the number of edges is heavily in�uen
ed by dis
onne
ting nodes, as wenote a sharp in
rease when these node dynami
s end.
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Figure 3.13: D - Overlay fault resilien
e (diameter, average path length, edge 
ount)

(a) Simultaneous dis
onne
tion of 750 out of 1281 nodes

(b) Simultaneous dis
onne
tion of 1000 out of 1281 nodesFigure 3.14: D - Overlay fault resilien
e (average path length, network size, and largest
onne
ted 
omponent)Although not shown in the �gures, the behavior 
on
erning graph 
y
les is highly vari-able, with the presen
e of a high number of small 
y
les of length up to 4. During allsimulations, despite the harsh 
onditions of the network, the overlay remains fully 
on-
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(a) Diameter, average path length, edge 
ount

(b) Tra�
Figure 3.15: E - Communi
ation fault toleran
e, stable s
enario (diameter, and tra�
)ne
ted; however both the number of links and the tra�
 signi�
antly in
rease: 
on
erningthe former, we observe an average of 8900 links (-R version) and 9200 links (-S version)during the dynami
 phases, and 9900 links (for both algorithms) afterwards. As depi
tedin the graphs, the tra�
 in
rease is due to the Constru
tion-Link Ants, whi
h are the resultof a high number of re
overy pro
edures that are started when a node stops re
eiving antsfrom a neighbor be
ause of lost network pa
kets. Frequent 
hanges in the neighborhoodsets 
an also be observed, as signaled by the number of Update Neighbors Ants, whi
ha

ount for the largest portion of the overall tra�
.3.7.6 F - SensitivityThe results obtained through our sensitivity analysis enable a deeper understanding ofthe in�uen
e of ea
h parameter on the out
ome of the optimization pro
ess, namely the
omplexity of the resulting topology, as well as its network 
ost. Ea
h experiment targetsone single parameter and results are 
ompared with the referen
e s
enario that is detailedbelow. Ex
ept for the referen
e s
enario, detailed graphs for this se
tion are available inAppendix A.
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(a) Diameter, average path length, edge 
ount

(b) Tra�
Figure 3.16: E - Communi
ation fault toleran
e, proper dis
onne
tion (diameter, andtra�
)F0 - Referen
e s
enario In the referen
e s
enario the network is stable until 6 hoursinto simulation; subsequently, one node is added and one is removed every 4 se
onds. Asshown in �gure 3.18 (a), the -R and the -S versions exhibit a similar behavior by redu
ingthe average path length to 6 during the initial phases of the simulation; however, whendynami
ity is introdu
ed in the overlay, both algorithms manage to maintain an averagepath length between 8 and 10. Be
ause a large number of existing nodes leave the overlay,the number of edges redu
es from around 7500 (-R) and 7600 (-S), to about 6000 and
7300, respe
tively.The information about graph 
y
les depi
ted in Figure 3.18 (b) supports the eviden
efound in early results of s
enario A: the more a

urate distan
e estimation me
hanismemployed by BlåtAnt-R 
ompared to the -S version improves the optimization pro
essand prevents 
y
les of length 3 and 4 even in the dynami
 part of the simulation. On the
ontrary, results in Figure 3.19 (a) show very similar behavior of both algorithms 
on
erningthe degree distribution, with the -R version obtaining a slightly smaller number of nodeswith maximum optimization degree (d(6)); the drop during the dynami
 phase is due to the
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(a) Diameter, average path length, edge 
ount

(b) Tra�
Figure 3.17: E - Communi
ation fault toleran
e, improper dis
onne
tion (diameter, andtra�
)removal of a large number of nodes, and the addition of new nodes that join the networkwith only one neighbor. Finally, in relation to the generated network tra�
, it is possibleto note the in�uen
e of Constru
tion-Link Ants in the dynami
 interval, with an averageof 50 kbps generated with both versions of the algorithm.A detailed analysis of the 
onne
tion and dis
onne
tion operations started by bothalgorithms reveals that the -R version initiates signi�
antly less 
onne
tions pro
eduresthan the -S version, with an average of 15560 and 65292 respe
tively. These results arere�e
ted in the average bandwidth 
onsumed by Optimization-Link Ants, whi
h amountsfor 0.37 kbps for the -R version and 0.87 kbps for the -S one. The improved distan
eevaluation implemented in the -R version also results in a higher per
entage of initiated
onne
tions that are su

essfully and 
orre
tly 
ompleted (i.e. 
onne
tions that 
orrespondto a 
orre
t distan
e estimation and are a

epted by both nodes). More spe
i�
ally, the -Rversion attains an average of 46.5%, whereas the -S one only a
hieves an average of 6.65%.Nonetheless, both algorithms exhibit a similar error rate 
on
erning 
ompleted 
onne
tions,with an average of 47.26% (-R) and 48.98% (-S) of the 
ompleted 
onne
tions resulting
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(a) Diameter, average path length, edge 
ount

(b) Graph 
y
lesFigure 3.18: F0 - Sensitivity referen
e s
enario (diameter and graph 
y
les)from wrong distan
e estimations.Additional experiments showed that dis
onne
tion pro
edures help improving the 
on-vergen
e of the diameter and average path length. In parti
ular, the a
hieved averagepath length at 5 hours 50 minutes into simulation was measured to be 6 with both algo-rithms when dis
onne
tion pro
edures were enabled; 
onversely, without dis
onne
tions,the average result was 6.37 and 7.5 for BlåtAnt-R and BlåtAnt-S respe
tively. Theseresults highlight the need for both optimization rules (
onne
tion and dis
onne
tion) forthe proper operation of the algorithm.F1 - Optimization parameter D Experiments with di�erent values for the parameter
D aim at assessing the a
hievable 
ontrol over the optimization pro
ess. As shown in FigureA.1 (a), di�eren
es are noti
eable only with BlåtAnt-R, mostly during the initial phaseof the simulation, where the average path length 
onverges toward a 
ommon minimum of
6. In this regard, only the experiment with D = 7 shows a signi�
antly di�erent behaviorthroughout the whole simulation. Con
erning the graph 
y
les, shown in Figure A.1 (b),
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(a) Degree distribution

(b) Network tra�
Figure 3.19: F0 - Sensitivity referen
e s
enario (degree and tra�
)it is possible to note how smaller values for D result, as expe
ted, in a larger number of
y
les of length less than 6. Conversely, the number of edges (Figure A.1 (d)) de
reaseswith larger D values, as less links are required to bound the diameter and to maintain thelower bound on the girth. Ultimately, in respe
t to the network overhead, we note that thegenerated tra�
 is inversely proportional to the value of D, a fa
t that 
an be attributedto the redu
ed number of links whi
h leads to a diminished number of Ping Ants that aresent by nodes to their neighbors.F2 - Dis
overy Ant birth probability µ The optimization pro
ess depends on theinformation 
olle
ted and spread by Dis
overy Ants. Intuitively, a larger population ofsu
h ants would provide more information to ea
h node, possibly improving the out
omeof the optimization. As shown in Figure A.2 (a), when ants are not deployed in the overlay(i.e. birth probability equal to 0%), the average path length is about 15 hops with bothversions of the algorithm. However, faster 
onvergen
e toward 6 hops is a
hieved as thepopulation is in
reased, and better 
ontrol during the dynami
 phase of the simulation is
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t of the dynami
s of the network also a�e
ts the simulation with noDis
overy Ants, whi
h sees its average path length de
rease to a value of 13. With regardto the graph 
y
les (A.2 (b)) the simulation with no Dis
overy Ants seems to performbetter than the others, by exhibiting a smaller number of 
y
les of length less than 6.This result is easily explained by the fa
t that typi
ally no 
y
les are 
reated during the
onstru
tion phase, as ea
h new node 
onne
ts as a leaf of one of the existing nodes, unlessmultiple 
onne
tion requests are started. This fa
t is also re�e
ted in the smaller numberof edges present in the overlay, as shown in Figure A.2 (
). During the dynami
 part of thesimulation, we note that larger populations help a
hieve a more stable behavior. Clearly,more ants not only provide better results, but also generate more tra�
 on the network(Figure A.2 (d)), hen
e a tradeo� is required: 
onsequently, a birth probability µ = 5%,
hosen as default value in our other experiments, seems to provide satisfa
tory results.F3 - Maximum length lv of the information ve
tor The maximum length of theinformation ve
tor 
arried by Dis
overy Ants determines how far ea
h node 
an see in theoverlay. Apart from a slight di�eren
e in the 
onsumed bandwidth, none of the sensitivityanalysis experiments 
on
erning the maximum length lv of the information ve
tor 
arriedby Dis
overy Ants show signi�
ant variations. The observed 
onvergen
e of average pathlength (Figure A.3 (a)), as well as the type and length of the dete
ted graph 
y
les (FigureA.3 (b)) are relatively similar, meaning that small variations in the amount of informationavailable to ea
h node neither bene�ts nor worsens the optimization pro
ess.F4 - Maximum number of allowed Dis
overy Ant hops π By letting Dis
overy Anttravel for more hops in the overlay in
reases the number of visited nodes and the amountof information available to ea
h node. As shown in Figure A.4 (a), faster 
onvergen
e ofthe average path length 
an be a
hieved with more than 15 hops. Con
erning graph 
y
les(Figure A.4 (b)), signi�
ant di�eren
es are visible only in BlåtAnt-S, with the dete
tionand removal of small 
y
les improving as ants are given more hops to travel in the overlay.This �nding 
an be explained by the fa
t that distan
e evaluations in the -S version areextra
ted dire
tly from the ve
tor 
arried by Dis
overy Ants, hen
e better informationqui
kly leads to an improved optimization pro
ess. Unsurprisingly, the amount of tra�
generated by the algorithm is proportional to the number of hops ea
h ant travels in theoverlay, thus a trade-o� is required (Figure A.4 (d)).F5 - Maximum per-node degree mo The maximum number of neighbors for ea
hnode represents the se
ond most important optimization 
onstraint after the parameter D.On one hand, a value that is too small 
ould hinder the optimization pro
ess and preventsu

essful 
onvergen
e of the diameter and average path length. On the other hand, avalue that is too large would permit the 
reation of large hubs in the overlay, and in
reasethe overall tra�
 generated by Ping Ants. The results illustrated in Figure A.5 (a) showthat neither version of the algorithm 
an ensure the upper bound on the diameter whenonly 4 neighbors are allowed. Meanwhile, in Figure A.5 (b) we note that a value of mo = 8leaves a larger number of 
y
les of length less than 6, indi
ating a less optimized overlay.Therefore, the default value of 6 represents the best trade-o�.



3.7. Results 79F6 - Exploration versus Exploitation Dis
overy Ant wandering on the overlay 
aneither 
hoose to follow a random path (exploration) or the one with the lowest γ pheromone
on
entration (exploitation). As shown in Figure A.6, no noti
eable variation 
an bedete
ted when the overlay is stable. However, some slight di�eren
es 
an be observed in thedynami
 phase of the simulation. In parti
ular, when full exploration (100%) is employedthe overall tra�
 is higher; 
onversely, with full exploitation (0%), a less optimized overlaywith a higher number of 
y
les smaller than 6 is obtained. These results motivate ourdefault 
hoi
e of κ = 50% as the more appropriate one.F7 - Size of the α table The α table maintained by ea
h node 
ontains partial knowl-edge about the overlay whi
h is used to determine if new 
onne
tions are to be 
reated andif 
y
les that are to be broken exist. It is interesting to determine how this informationin�uen
es the optimization pro
ess a
hieved by BlåtAnt. As expe
ted, the results shownin Figure A.7 show no signi�
ant di�eren
e between simulations with di�erent table sizesin BlåtAnt-S, as only the 
onne
tion pro
ess depends on the information in the table.On the 
ontrary, with BlåtAnt-R the results 
on
erning graph 
y
les (Figure A.7 (b))show that a larger table enables better dete
tion and removal of small 
y
les. Although alarger table does not in
rease the tra�
 generated by the algorithm, it augments the timerequired to evaluate the information and extra
t distan
e estimations, in parti
ular withBlåtAnt-R. Moreover, a larger table is more prone to 
ontaining outdated informationwhi
h 
ould lead to wrong optimization de
isions.3.7.7 G - Comparison with News
ast and GnutellaTo better understand the bene�ts of BlåtAnt, we 
ompare here the results obtainedin the stable s
enario A, as well as in the dynami
 baseline s
enario F0, with two otheroverlay management algorithms, namely News
ast and Gnutella. Comparisons instable 
onditions provide useful information about the stati
 
hara
teristi
s of the resultingoverlays, whereas dynami
 simulations provide an insight into their behavior in realisti

onditions.Stable overlay The diameter and average path length are redu
ed by both News
astandGnutella to a value between 5 and 6, and 4 respe
tively (Figure 3.20 (a)). In 
ontrastto BlåtAnt, it is not possible to 
onstrain these values as they are emerging 
hara
teristi
sof the management algorithm rather than the result of a willful optimization pro
ess. Thesame observations 
an be made 
on
erning the graph 
y
les (Figure 3.20 (b)): with bothNews
ast and Gnutella a large number of small 
y
les of length 3 and 4 exist in thegraph, and the average 
lustering 
oe�
ient is 0.72 for the former (whi
h is 
ompatiblewith the observations made in [158, 159℄), and 0.49 for the latter. A

ordingly, in 
ontrastto BlåtAnt (whi
h exhibits an average 
lustering 
oe�
ient of 0), many redundant pathsexist in these overlays.Figure 3.21 (a) shows the stability of the overlay in terms of 
hanged links per se
-ond. Be
ause News
ast nodes periodi
ally merge their 
a
hes, an average of 35 links
hange every se
ond even though no nodes are added or removed. On the 
ontrary, withGnutella as soon as all nodes have �lled their available slots after the initialization phase,
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ast Gnutella

(a) Diameter, average path length, edge 
ount

(b) Graph 
y
lesFigure 3.20: G - Comparison with News
ast and Gnutella (stable overlay - diameter and
y
les)no subsequent 
hanges are made to neighbors, hen
e the overlay is perfe
tly stable. In thisregard, the results a
hieved with BlåtAnt in s
enario A (where less than 1 link is 
hangedevery se
ond) are satisfa
tory. Con
erning tra�
 (Figure 3.21 (b)), it is possible to notethat the 
onstant merges in News
ast a

ount for a negligible bandwidth 
onsumption of
0.9 kbps. On the 
ontrary, Gnutella requires 
onstant probing of ea
h node's neighborsby means of ping messages, thus its overall bandwidth 
onsumption is 
onsiderably higherthan both News
ast and BlåtAnt.Dynami
 overlay Simulations in the dynami
 overlay (Figure 3.22) show that News-
ast exhibits a larger in
rease of the average path length than Gnutella during thedynami
 phase of the simulation. Moreover, the diameter in the former is highly variable,rea
hing a maximum of 18. Network dynami
s signi�
antly redu
e the number of small
y
les in Gnutella, a phenomenon that is prevented in News
ast as a result of the
onstant 
a
he merging pro
ess. In both 
ases, the number of edges at the end of thesimulation is redu
ed be
ause the size of the network shrinks from 1281 to 1280. We note
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ast Gnutella

(a) Stability

(b) Network Tra�
Figure 3.21: G - Comparison with News
ast and Gnutella (stable overlay - stability andtra�
)a sharp in
rease in tra�
 in both algorithms (Figure 3.22 (
)), with an in
rease of over 6times in News
ast (up to 6 kbps) and more than 15 times in Gnutella. Con
erningthe former, the additional network overhead is 
aused by new nodes sending pings as theyjoin the overlay, while in the latter the in
reased tra�
 is the result of merges performedby new nodes. Compared to BlåtAnt, the bandwidth 
onsumption of News
ast is stilllower, while that of Gnutella is signi�
antly higher. To this extend, News
ast seemsa better 
ompetitor for our approa
h.3.8 A

ura
y of the resultsTo determine the a

ura
y of our data, the following pro
ess has been used. For ea
hs
enario, the results presented in this 
hapter refer to averages from 5 simulation runs. Inea
h run, measurements (su
h as the average path length or the number of edges) havebeen taken every 1000 se
onds, for a total of 44 during the simulated 12 hours of operationof the overlay. For ea
h measurement point, the relative standard deviation a
ross all runs
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ast Gnutella

(a) Diameter, average path length, edge 
ount

(b) Graph 
y
les

(
) Network Tra�
Figure 3.22: G - Comparison with News
ast and Gnutella (dynami
 s
enario)is 
omputed; a

ordingly we 
onsider the average, as well as the maximum values of thelatter in order to 
hara
terize the overall a

ura
y of the data 
olle
ted throughout ourexperiments.In all s
enarios, the relative standard deviation for ea
h measurement has been found to



3.9. Algorithm analysis 83be very low, highlighting the stability of the algorithm and the reprodu
ibility of results.The average of the relative standard deviation a
ross all measurements has also beendetermined to be negligible. The following statisti
al information 
an be extra
ted for themost relevant measurements:
− Average path length: the average of all of the s
enario's average relative stan-dard deviation a
ross all periodi
 measurements is 4.6%, with the highest valuesbeing 12.2% (in the sensitivity analysis with BlåtAnt-R and D = 7), 11.4% (inthe sensitivity analysis with BlåtAnt-R and mo = 8), 10.5% (in the sensitivityanalysis with BlåtAnt-R and π = 15), and 10.4% (in the sensitivity analysis withBlåtAnt-R and µ = 1%). These s
enarios 
an be 
onsidered as extreme ones, aseither the information 
olle
ted by nodes was limited (as with D = 7, π = 15, or
µ = 1%), or the 
onstraints were too loose (mo = 8) to for
e a stable 
onvergingbehavior of the overlay optimization pro
ess.

− Edge 
ount: the average of all of the s
enario's average relative standard deviationa
ross all periodi
 measurements is 1.66%, with the highest values being 14.2% (inthe sensitivity analysis with BlåtAnt-R and D = 7), and 10.6% (in the sensitivityanalysis with BlåtAnt-R and mo = 8).
− Graph 
y
les: the number and length of dete
ted graph 
y
les are volatile values,and an average relative standard deviations of 33% a
ross all measurements has beendetermined. It is noteworthy to say that the largest deviations are found in large
y
les (of length greater than 5), hen
e the ability of both algorithms to dete
t andbreak small 
y
les is still valid.
− Tra�
: the average relative standard deviation is at most 0.1% in all s
enarios,whi
h proves that the algorithm has predi
table bandwidth 
onsumption.3.9 Algorithm analysisThe optimization algorithm implemented by BlåtAnt through the Conne
tion and Dis-
onne
tion rules des
ribed in Se
tion 3.3 relies on graph traversal and single-pair shortest-path resolution algorithms. In this se
tion, the time 
omplexity of a 
entralized implemen-tation of the algorithm and of the 
onsidered fully distributed versions is evaluated.Centralized algorithm In a 
entralized implementation of the algorithm, two phasesare required: one involving the dis
onne
tion of nodes to break up 
y
les smaller thanthe prede�ned threshold, and one to 
onne
t nodes in order to bound the diameter ofthe network. Ea
h phase needs to be repeated as long as either the Dis
onne
tion or theConne
tion rule apply. In the �rst phase, all nodes are iteratively pro
essed, the pathsbetween all neighbors are 
omputed, and eventually the Dis
onne
tion rule is applied.Conversely, during the 
onne
tion phase, the shortest paths between all pairs of nodes are
omputed to determine whether the Conne
tion rule applies. Be
ause all operations areexe
uted sequentially and neither phase requires the details of ea
h path (traversed nodes)but only the distan
e between nodes, a breadth-�rst traversal te
hnique 
an be employed,



84 Chapter 3. BlåtAnt Algorithmleading to a 
omplexity of O(N + Nm) for ea
h distan
e evaluation in a network of Nnodes with at most m neighbors per node. Sin
e ea
h node needs to be pro
essed, theoverall 
omplexity of ea
h phase is O(N2).BlåtAnt-R Ea
h node implementing BlåtAnt-R lo
ally employs an approa
h sim-ilar to the 
entralized algorithm, although on 
onsiderably smaller graphs based on lo
aland partial information. In parti
ular, the size of the partial network 
onstru
ted from the
a
he table α is determined by the size table ⌈|α|⌉ and the maximum number of neighborsper node m. Con
erning the Conne
tion rule, the 
omplexity for evaluating the wholetable using the breadth-�rst algorithm is O(⌈|α|⌉2m2). In 
ontrast to the 
entralized solu-tion, to safely apply the Dis
onne
tion rule the list of traversed nodes must be determinedin order to identify the master of ea
h 
y
le. A

ordingly, a breadth-�rst traversal 
an-not be employed to determine the distan
e between neighbors of ea
h node. Supposingthat the Djikstra ([93℄) algorithm is employed instead, the worst-
ase time 
omplexity toevaluate the whole 
a
he table is O ((

m
2

)

(⌈|α|⌉m log(⌈|α|⌉m) + ⌈|α|⌉m)
). Several e�
ien
yimprovements 
an be implemented to further redu
e the 
omputational load on ea
h node;for example, unrea
hable nodes 
an removed from the partial graph as soon as they aredete
ted, redu
ing the time spent for subsequent distan
e evaluations.BlåtAnt-S In 
ontrast to the -R version, BlåtAnt-S determines distan
es solely onthe position of the elements within information ve
tors 
olle
ted by Dis
overy Ants. A
-
ordingly, the time 
omplexity is O(lv) ea
h time a node pro
esses an in
oming informationve
tor.Through an empiri
al investigation of BlåtAnt-R we have observed a linear growthof the pro
essing times required by the 
onne
tion phase (evaluation of distan
es in orderto 
reate additional links) in relation to the size of the α table. More spe
i�
ally, wemeasured 0.24 ms with ⌈|α|⌉ = 28, 0.31 ms with ⌈|α|⌉ = 36, and 0.7 ms with ⌈|α|⌉ = 84.Also on BlåtAnt-R a less-than-linear growth was found regarding the maximum numberof neighbors m, with 0.24 ms with m = 8, 0.28 ms with m = 16, and 0.29 ms with m = 24.In this respe
t, it should be noted that the in
rease of the maximum number of neighborshas not resulted in a signi�
ant in
rease in the a
tual edges in the network, meaning thatthe majority of the nodes retained as small a number of neighbors as ne
essary to maintaina bounded diameter. This phenomenon also in�uen
ed the average time spent during thedis
onne
tion phase (evaluation of distan
es between neighbors in order to break small
y
les): with respe
t to both ⌈|α|⌉ and m a less-than-linear growth instead of a quadrati
one was observed. More spe
i�
ally, the measured times were 0.2 ms with ⌈|α|⌉ = 28, 0.26ms with ⌈|α|⌉ = 36, and 0.5 ms with ⌈|α|⌉ = 84, and 0.2 ms with m = 8, 0.22 ms with

m = 16, and 0.22 ms with m = 24 respe
tively. Regarding BlåtAnt-S the measuredgrowth related to an in
rease of lv was found to be linear, validating our formal analysis.As expe
ted, the pro
essing times for both the 
onne
tion and the dis
onne
tion phaseswere also 
onsiderably shorter than with the -R version, ranging from 0.02 ms with lv = 15up to 0.03 ms with lv = 45 for the 
onne
tion phase, and < 0.01 ms for the dis
onne
tionphase in all experiments up to lv = 45.



3.10. Summary 853.10 SummaryIn this 
hapter the BlåtAnt algorithm was thoroughly detailed and evaluated. By meansof a fully distributed, bio-inspired algorithm, the topology of the overlay is optimized tobound the diameter as well as the girth. Whereas the �rst goal diminishes sear
h responsetimes by limiting the maximum number of hops traveled by queries, the se
ond one miti-gates the problem of redundant message transmission by redu
ing a
tively breaking small
y
les in the overlay. The fundamental prin
iples of the algorithm have been dis
ussed, andtwo implementations were presented. An in-depth analysis of the behavior of the algorithmin several network 
onditions, 
ondu
ted by means of a simulator, validates the proposedapproa
h and demonstrates the suitability of BlåtAnt for real-world deployments.
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overy is a servi
e that allows users and appli
ations to �nd the resour
esshared by remote systems 
onne
ted to the overlay by means of a querying me
hanism.An important aspe
t to de�ne the qualities of a dis
overy me
hanism is its ability to re-solve queries with minimal bandwidth 
onsumption, while providing satisfa
tory hit rates.In [151℄, the authors identify several requirements for su

essful resour
e dis
overy in dy-nami
 environments, su
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h, s
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88 Chapter 4. Resour
e Dis
overywith our view presented in Chapter 3, that dealt with the problem of 
onstru
ting anoptimized unstru
tured peer-to-peer overlay using a fully distributed algorithm, the aim ofthis 
hapter is to investigate e�
ient de
entralized sear
h methods to further exploit theproperties of su
h system. We thus propose a fully distributed sear
h me
hanism [53, 54℄inspired by existing te
hniques, espe
ially routing indi
es, repli
ation and 
lustering. Inthis regard, our e�ort is to provide ea
h node with a 
a
he 
ontaining addresses of otherpeers in the network that share similar resour
es or servi
es, and forward resour
e dis
ov-ery queries toward those nodes whenever possible, in order to in
rease the number of hitsat minimal 
ost. More pre
isely, the presented solution builds loosely 
oupled 
lusters, andis 
omplementary to other te
hniques aimed at improving sear
h in unstru
tured overlays,su
h as repli
ation, teeming and sele
tive forwarding.The rest of this 
hapter 
ompletes our review of sear
h in unstru
tured peer-to-peersystems presented in Chapter 2 with an additional dis
ussion of similar te
hniques thatrelate to our approa
h. This is followed by an overview of the proposed lo
al 
a
hingme
hanism and by a thorough validation by means of simulations.4.1 Enhan
ing semanti
-aware resour
e dis
overySemanti
-aware resour
e dis
overy exploits the information 
on
erning both the resour
esand the queries in order to improve sear
h e�
ien
y. Of parti
ular interest for our re-sear
h are two semanti
 based te
hniques, namely routing indi
es [83℄ and 
lustering [114℄.Furthermore, repli
ation 
an be exploited to in
rease the likelihood of �nding mat
hingresour
es and redu
e sear
h delays [195℄. In this respe
t, the information might be ei-ther naturally repli
ated, as it is the 
ase with popular 
ontent in �le sharing networks,or proa
tively repli
ated as the result of a repli
ation algorithm. Routing indi
es employsemanti
 information to forward queries toward nodes that are more likely to provide therequested servi
e, while 
lustering solutions group semanti
ally similar resour
es with thegoal of making forwarding more e�
ient as well as in
reasing the hit (or re
all) rate on
ea hit has been found.Examples that employ semanti
 information to route queries in
lude [301, 73℄, whereit is suggested to use lo
al indi
es to forward sear
h queries toward nodes that are morelikely to satisfy them. The forwarding poli
y is normally based on satisfa
tion indi
esthat are evaluated based on past experien
es, namely su

essful query responses. Buildingon the prin
iples of the routing indi
es paradigm, di�erent propagation strategies 
an beimplemented, as suggested in [151℄. A similar solution is employed in [227℄, to implementa grid information servi
e based on peer-to-peer te
hnologies that uses routing indi
es todire
t queries toward the 
losest known node that might ful�ll the request. Figure 4.1illustrates an example of resour
e dis
overy querying for a resour
e on node E: by usinglo
al information in the routing table, the query is �rst forwarded toward node B, and�nally to node R that provides a mat
h.In 
ontrast to routing indi
es, whi
h are 
on
erned with query routing, 
lustering me
h-anisms fo
us on organizing and repli
ating information in order to group them into seman-ti
ally similar groups. From this point of view, an interesting and self-organized solutiongeared toward grids is Antares [114℄: by employing a swarm intelligen
e algorithm, 
lus-ters of referen
es to nodes sharing similar resour
es are 
reated. Ant inspired mobile agents
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Figure 4.1: Resour
e dis
overy with routing indi
eswander a
ross the network, and transfer resour
e des
riptors following a simple algorithm:on a node, if an ant is not 
arrying any des
riptor, it randomly pi
ks the one that is lesssimilar to the others and then 
ontinues wandering; 
onversely, if the ant is 
arrying ades
riptor, it will release it with a probability proportional to the similarity between the
arried des
riptor and the des
riptors stored by the node. The out
ome of this pro
essis that des
riptors that are similar will be likely on the same node or on nearby nodes.Resour
e dis
overy in Antares is started as a blind random walk sear
h; when a node thatshares resour
es similar to what is being queried is found, the sear
h be
omes informedand forwarding is done toward nodes that are the most similar to the target spe
i�ed inthe query. The bene�ts of 
lustering are twofold: on one side during resour
e dis
overysemanti
 information 
an be used to route the query toward a mat
hing node; on the otherside, when a mat
hing node is found, additional hits 
an be resolved nearby with limitedbandwidth 
onsumption by 
onta
ting nodes in the neighborhood. Figure 4.2 depi
ts anexample of resour
e dis
overy querying for resour
es similar to the ones referen
ed by de-s
riptors stored on R: (a) the random walk pro
ess progresses toward node R, and then(b) �ooding the neighborhood allows �nding additional results.

Figure 4.2: Resour
e dis
overy with 
lusteringA solution inspired by both routing indi
es and 
lustering is presented in [267℄: ea
hnode in a Gnutella-like network maintains a list of short
uts to other nodes that sharesimilar interests. These short
uts are dis
overed by performing sear
hes using a �oodingproto
ol, and are subsequently used to �nd additional short
ut 
andidates. For resour
edis
overy, peers try to use the available short
uts and fall ba
k to �ooding only if none of
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e Dis
overythe short
uts has the requested 
ontent. In a similar way, the solution presented in this
hapter builds on the prin
iple of 
reating and maintaining lo
al 
a
hes on ea
h node, that
ontain addresses of other nodes in the overlay that share similar resour
es. These 
a
hesrepresent small 
lusters that 
an be exploited during resour
e dis
overy: more spe
i�
ally,when a node mat
hing the query is found, the forwarding of the query 
ontinues for someadditional steps toward nodes in the 
a
he, as the referen
ed nodes are more likely toprovide additional results. Content in the 
a
he is obtained by means of proa
tive resour
edis
overy queries as well as by ex
hanging it with other nodes using an epidemi
 proto
ol.4.2 Proa
tive 
a
hingWhile the overlay topology maintained by BlåtAnt enables optimized 
ommuni
ationby a
tively bounding the maximum distan
e between ea
h pair of nodes, and also byredu
ing the number of redundant paths between nodes, obtaining satisfa
tory resour
edis
overy hit rates by broad
asting a query on the network still requires visiting a largenumber of nodes. The aim of the proposed resour
e dis
overy approa
h is to in
reasethe hit rate by exploiting 
a
hed information in order to minimize the average bandwidth
onsumed to obtain ea
h result. Be
ause transferring data a
ross the overlay generatesadditional tra�
, we target a positive trade-o� between the in
reased number of hits andthe additional bandwidth related to resour
e dis
overy.4.2.1 Resour
e pro�lesEa
h node in the overlay shares some information or resour
es with other nodes: the
hara
teristi
s of shared 
ontent 
an be referred to as the resour
e pro�le of a node. Aresour
e pro�le 
an be represented by a ve
tor of tuples that des
ribe the di�erent aspe
tsof the resour
e: for example, a node in a 
omputing grid is 
hara
terized by the servi
eso�ered, the CPU ar
hite
ture, the amount of memory, et
. The information 
ontained ina pro�le need not to be stati
; in parti
ular, it is possible to distinguish between stati
 anddynami
 aspe
ts: whereas the former are 
on
erned with 
hara
teristi
s that are not likelyto 
hange a
ross time (as for example, the CPU ar
hite
ture), the latter fo
us on valuesthat 
hange a
ross time (for example, the available memory, whi
h depends on the statusof the node, the 
urrent a
tive tasks, and the s
heduling poli
y). A

ordingly, a dynami

a
hing me
hanism that 
an take into 
onsideration possible 
hanges in the availability ofresour
es is required.4.2.2 Pro�le similarityInformation in the 
a
he 
ontains referen
es to nodes sharing similar 
ontents or resour
es,and are thus likely to mat
h the same queries. In order to determine if two resour
e pro�lesare similar we use a similarity fun
tion to express the distan
e between pro�les as a realvalue. We propose here two similarity fun
tions, namely a 
osine similarity fun
tion anda di�eren
e ve
tor one.
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a
hing 91Cosine similarity Given two nodes ni and nj , their resour
e pro�le ve
tors pi and pj , asuitable s
alar produ
t operation, and a norm ‖.‖, we 
onsider a 
osine similarity fun
tion
Λ(pi, pj) ∈ [0, 1], su
h that

Λ(pi, pj) =











pi·pj
||pi||||pj||

if pi·pj
||pi||||pj||

> 0

0 otherwiseThe s
alar produ
t and the norm have to be de�ned su
h that the pro�les are equivalenti� Λ(pi, pj) = 1, and similar i� this value is 
lose to 1 a

ording to a user-de�ned threshold.Di�eren
e ve
tor similarity The similarity value 
an be simpli�ed if values in theresour
e pro�le map onto a dis
rete ordered sets. In this 
ase, the similarity fun
tion 
anbe 
omputed by �rst 
reating two ve
tors, one for ea
h pro�le, that map the pro�le valuesto the ordinals in the dis
rete domains, and then 
omputing the maximum of the absolutevalue of the 
omponents of the ve
tor. For example, given the following dis
rete sets:
memory = [512MB, 1GB, 2GB, 4GB, 8GB],

cpu = [1GHz, 2GHz, 3GHz]and two resour
e pro�les A = [2GB, 2GHz] and B = [8GB, 3GHz], the resulting ve
torsare:
A′ = [3, 2], B′ = [5, 3]The similarity fun
tion is then 
omputed as the maximum absolute value of the 
omponentswithin the di�eren
e ve
tor, i.e:

max(|A′ −B′|) = max(|3− 5|, |2 − 3|) = max(2, 1) = 2Depending on the 
onsidered appli
ation, two resour
e pro�les 
an be 
onsidered similarif the value of the fun
tion is 1, 2, or a bigger value.4.2.3 Similar peers 
a
heEa
h node keeps a 
a
he table of size csize storing identi�ers and timestamps of other nodeswith a similar pro�le. The timestamp is used to determine the age of an entry. The 
a
heis updated at regular intervals by starting proa
tive resour
e dis
overy queries to sear
hfor other nodes in the network having a similar pro�le. Results from proa
tive queries arestored in the table and repla
e existing entries. Similarly to routing indi
es, the short
uts
ontained in the 
a
he form a se
ond-level overlay, where ea
h node's neighborhood is
omposed of peers with similar resour
e pro�les. Figure 4.3 illustrates an example overlayand the 
a
he on node A, whi
h 
ontains referen
es to nodes that share similar resour
esa

ording to the de�ned resour
e domain.
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Figure 4.3: Example overlay and detail of the lo
al 
a
he on node A4.2.4 Ca
he mergingMaintaining up to date 
a
he information through proa
tive resour
e dis
overy queriesmay lead to high network overhead. We thus introdu
e a 
a
he merging me
hanism thatenables nodes to share their 
a
he 
ontents with peers having similar pro�les. This avoids�ooding the network with proa
tive queries, in favor of a pairwise ex
hange of a smallnumber of node identi�ers.The pro
ess itself is inspired by the News
ast [159℄ epidemi
 algorithm. At regularintervals, ea
h node randomly 
hooses a peer from within its 
a
he 
ontents and initiatesa merging pro
edure. The initiating peer requests the 
ontent of the remote 
a
he, mergesthem with the lo
al 
a
he, and retains at most the csize − 1 entries with the highesttimestamp (i.e. the most re
ent information). Both the initiating node and the remotenode will then repla
e their own 
a
hes with the resulting set. Finally, the initiatingnode will add the remote peer identi�er, along with an updated timestamp to its 
a
he.Conversely, the remote peer will add the initiating node's identi�er and updated timestampto its 
a
he. It should be noted that su
h simple merging me
hanism 
ould be repla
ed bya more advan
ed merging s
heme in future work.4.2.5 Enhan
ed resour
e dis
overyResour
e dis
overy is performed using a limited and probabilisti
 �ooding algorithm. Lim-ited �ooding implies that nodes keep tra
k of re
eived queries, and avoid forwarding queriesthat have already been pro
essed. Probabilisti
 �ooding means that, at ea
h step, the queryis forwarded only to a subset of all neighbors. In our approa
h, the subset is 
onstru
tedby uniformly sampling the neighborhood set. We 
onsider the query as su

essful when atleast one node mat
hing the query is found; 
onversely, ea
h resour
e found 
ounts as a hit.A

ordingly, the hit rate (re
all rate) measures the per
entage of su

essfully dis
overedresour
es out of all mat
hing ones.The peer 
a
he itself is exploited by non-proa
tive sear
hes to enhan
e the hit rate:when a mat
hing resour
e is found, instead of stopping the sear
h the query jumps to thenode 
a
he and 
ontinues for an additional number of steps. In this way, there is a highprobability of rea
hing additional hits be
ause of the way the 
a
he has been 
onstru
ted.Figure 4.4 depi
ts an example of resour
e dis
overy exploiting the lo
al 
a
he. Whenthe query rea
hes node A, a mat
h is found, hen
e the forwarding 
ontinues using the
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uts available in the 
a
he, leading to an additional hit on node E.

Figure 4.4: Resour
e dis
overy exploiting lo
al 
a
hes4.3 EvaluationWe 
ondu
ted a detailed experimentation of the proa
tive 
a
hing, and 
ompared its per-forman
e against basi
 resour
e dis
overy. For evaluation purposes, and in line with thethesis evaluation s
enario, a grid network has been 
onsidered. In this se
tion the detailsof the simulation tests are presented and dis
ussed.4.3.1 Simulation setupSimulation of resour
e dis
overy is performed by randomly 
hoosing both a starting nodeand a sear
h pro�le. A set of 5 simulation runs of 12 hours were evaluated: 5 sear
h queriesare regularly started every 60 se
onds, beginning at 30 minutes into simulation and endingat 12 hours, resulting in a total of 3450 queries per run. The results detailed in the nextse
tion thus represent an average over the latter number of requests.4.3.2 Peer-to-Peer OverlayThe underyling overlay is 
onstru
ted and maintained by BlåtAnt-S, whi
h was 
hosenfor its lower network overhead 
ompared to BlåtAnt-R. Similarly to BlåtAnt ants,resour
e dis
overy queries also 
ontribute in reinfor
ing β and γ pheromone trails as theypropagate a
ross the network. As with the referen
e s
enario F0 dis
ussed in Chapter 3,the network is bootstrapped starting from an initial random latti
e 
onsisting of 10 well-known nodes. In the �rst phase of the evaluation, additional 1271 nodes 
onne
t to theoverlay, up to a total of 1281 nodes. Overlay parameters, as well as the simulated rates andintervals of 
onne
tions and dis
onne
tions are as in the referen
e s
enario. A

ordingly,the expe
ted average path length in the overlay is 8, although the TTL of resour
e dis
overyqueries has been set to 5 in order to highlight the bene�ts of the 
a
he me
hanism whileretaining a reasonable tra�
 overhead. To evaluate resour
e dis
overy in dynami
 network
onditions, the overlay is modi�ed at runtime by having new nodes joining the overlayevery 4 se
onds in the period between 6 and 9 hours into simulations. Upon dis
onne
tion,nodes either leave the overlay properly or abruptly.
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e Dis
overyIn order to assess the impa
t of di�erent overlay management algorithms on the perfor-man
e of the proposed 
a
hing me
hanism, we also experiment with topologies 
onstru
tedand maintained by News
ast and Gnutella. Con
erning the former, ea
h node man-ages a News
ast 
a
he table of 20 entries, whi
h is merged with other peers every 10minutes on average. Conversely, in Gnutella experiments ea
h node maintains at most
10 neighbors (ex
epted for well-known nodes), and ping messages are forwarded every 30se
onds at a distan
e of 7 hops in the overlay to at most 4 neighbors at ea
h step.4.3.3 Evaluation s
enariosAs our evaluation aim at assessing the performan
e and robustness of the proposed resour
edis
overy me
hanism, di�erent evaluation s
enarios experimenting with di�erent parametervalues have been 
onsidered. In parti
ular we performed an analysis of the hit rate (alsoknown as re
all rate), whi
h represents the per
entage of dis
overed resour
es mat
hingthe query out of all mat
hing ones available in the network, of the generated tra�
, as wellas of the sensitivity of the algorithm toward parameter variations. A

ordingly, a numberof evaluation s
enarios (a listing of whi
h is available in Table 4.2) have been simulated.The parameters that have been 
onsidered in our analysis, as well as the default valuesemployed in our experiments (unless otherwise stated), are detailed in Table 4.1.Value Des
ription

TTL 5 Resour
e dis
overy query time-to-live (hops in theoverlay)
FW 4 Probabilisti
 forwarding sample size (number of neigh-bors)
M − Int 15 Ca
he merge interval (in minutes)
P − Int 45 Proa
tive queries interval (in minutes)
C − TTL 3 TTL while traveling within the 
a
he (in hops)
C − FW 3 FW while traveling within the 
a
he (number of 
a
heentries)
P − TTL 4 Proa
tive queries TTL (in hops)
P − FW 3 Proa
tive queries FW (number of neighbors)
− None Repli
ation strategy (None, one-hop, 5-hops)Table 4.1: Summary of resour
e dis
overy evaluation parametersBy means of our evaluation we aim at assessing the in�uen
e of these parameters onboth the hit rate and the 
onsumed bandwidth.S
enario Fo
us of the evaluationA Bene�ts of proa
tive 
a
hingB Bene�ts of proa
tive 
a
hing with repli
ationC SensitivityD Comparison on News
ast and Gnutella overlaysTable 4.2: Summary of the resour
e dis
overy evaluation s
enarios
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e pro�lesUpon 
reation, ea
h node is assigned a random stati
 resour
e pro�le that does not 
hangeduring evaluation. Pro�les are 
omprised of several �elds that des
ribe both hardware andsoftware properties of the ma
hine. In parti
ular, we 
onsider the implemented ar
hite
ture(e.g. amd64, power, et
.), available memory, available disk spa
e, and operating system(e.g. Linux, Solaris, et
.). Values for ea
h �eld are 
hosen with di�erent probabilitydistributions, as follows:
− Ar
hite
tures are 
hosen a

ording to the list published on the TOP500 Super
om-puting Sites (www.top500.org) at the time of the writing of this thesis. The probabil-ity distribution is as follows: amd64 87.2%, power 11%, ia-64 1.2%, spar
 0.2%,mips 0.2%, ne
 0.2%;
− Available Memory and Disk Spa
e are both independently and uniformly 
hosenas either 1, 2, 4, 8, or 16 Gigabytes;
− Operating Systems installed on ea
h node are based on the aforementioned TOP500list, with the following distribution: Linux 88.6%, Solaris 5.8%, Unix 4.4%, Win-dows 1%, BSD 0.2%.The simulator generates resour
e dis
overy queries with random pro�les a

ording tothe aforementioned distribution, that will be mat
hed by nodes on the overlay. To 
omputepro�le similarity, the ar
hite
ture and operating systems are 
onsidered as dis
riminant as-pe
ts, thus two pro�les with di�erent values are always 
onsidered as non similar (similarityvalue equal to 0). On the other side, a similarity value 
an be 
omputed for pro�les withmat
hing operating system and ar
hite
ture, using the early mentioned di�eren
e ve
torsimilarity fun
tion. More pre
isely, given two resour
e pro�les a, b, and the 
orrespondingvalues for memory and disk spa
e amem, bmem, respe
tively adisk, bdisk we 
onsider a similarto b if bmem

2 ≤ amem ≤ 2 · bmem and bdisk
2 ≤ adisk ≤ 2 · bdisk. It is important to note thisvalue for similarity is not 
ommutative.4.3.5 Tra�
 EvaluationTo evaluate the amount of bandwidth 
onsumed by resour
e dis
overy, the following tra�
estimations have been 
onsidered:

− resour
e dis
overy queries / repli
ations: 5 KBytes;
− resour
e dis
overy query replies: 128 bytes;
− repli
ation: 5 KBytes per hop;
− 
a
he merge: 1064 bits plus 176 bits/
a
he entry;
− ping: 704 bits (2 ∗ (320 + 32) bits ICMPv6).These estimations are based on the a
tual information 
arried by ea
h ant, and in
ludeboth the size of an IPv6 header (320 bit), a UDP header (64 bit), as well as a 4 bits
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e Dis
overypa
ket type identi�er and 144 bits sour
e identi�er (128 bits IPv6 identi�er plus 16 bitsport number). The obtained tra�
 results are based on an average 
ost over the totalnumber of 3450 queries, and in
lude the overlay management, the proa
tive 
a
hing task(if appli
able), repli
ation (if enabled), and resour
e dis
overy. The bandwidth 
onsumedby the overlay management algorithm and by proa
tive 
a
hing does not depend on theresour
e dis
overy a
tivity, and it should thus be 
onsidered as a �xed 
ost shared amongall queries.4.3.6 S
enario detailsThe rest of this se
tion dis
usses the algorithm parameters used in ea
h s
enario a

ordingto the fo
us of the evaluation. A detailed overview of the default parameter values used inea
h s
enario is shown in Table 4.1, unless otherwise spe
i�ed; the 
orresponding resultsare presented in Se
tion 4.4.A - Bene�ts of proa
tive 
a
hing S
enarios A evaluate the bene�ts of the proposedproa
tive 
a
hing s
heme. In order to setup a baseline for 
omparison, several simulationswithout 
a
hing that employ a simple probabilisti
 �ooding proto
ol and di�erent queryforwarding strategies have been performed. More spe
i�
ally, we experimented both with�xed query TTLs equal to 5 and varying number of 
onta
ted neighbors (3, 4, 5, 8), as wellas with TTL varying between 5 and 9 and �xed number of neighbors equal to 4. Thesame experiments have been repeated with proa
tive 
a
hing enabled. Proa
tive resour
edis
overy queries are started every 45 minutes (P-Int), while 
a
he merging happens onea
h node with an average period of 15 minutes (M-Int). Ea
h proa
tive query is forwardedup to a distan
e of 4 hops in the overlay (P-TTL): at ea
h forwarding step, 3 neighborsare 
onta
ted (P-FW ). The 
a
he on ea
h node stores at most 5 entries (C-size). On
e ahit is found, resour
e dis
overy queries may travel at most 3 hops in the overlay (C-TTL),
onta
ting 3 peers at ea
h step (C-FW ). From this set of experiments, the one employinga forwarding strategy of 5 hops and 4 neighbors is 
onsidered as baseline for all others
enarios, be
ause, as it will be made 
lear by the results, it provides one of the lowest 
ostper hit.B - Bene�ts of proa
tive 
a
hing with repli
ation To assess the in�uen
e of repli-
ated 
ontents on the bene�ts brought by proa
tive 
a
hing, s
enario B experiments withtwo di�erent repli
ation strategies: one-hop repli
ation and repli
ation at a distan
e of 5hops. While the �rst strategy represents a typi
al 
hoi
e in peer-to-peer systems, the se
-ond one is tailored for the BlåtAnt overlay 
onstru
ted with D = 5, be
ause the size of
y
les in the graph should enable traveling for 5 hops away from a node without followingredundant paths. The 
onsidered query forwarding and proa
tive 
a
hing parameters areas in s
enario A.C - Sensitivity Whereas previous s
enarios aim at assessing the improvements derivedby our proa
tive 
a
hing approa
h, sensitivity analysis s
enarios fo
us on determining howalgorithm parameters values a�e
t the performan
e of the system.
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• C1 - Sensitivity to hops traveled in the 
a
he (C-TTL, C-FW): to evaluatethe impa
t of 
a
he navigation strategies we 
ondu
t several experiments with dif-ferent C-TTL and C-FW. The value of C-TTL is 
hanged from the default 3 hops,to 2 and 5 hops, whereas the C-FW is 
hanged from the default 3 neighbors, to 1, 2,and 5.
• C2 - Sensitivity to the 
a
he merge interval (M-Int): 
a
he merges enableinformation sharing between nodes, and help 
leaning old entries from 
a
hes, thuspreventing referen
es to missing nodes that have already left the network. We assessthe performan
e of the algorithm pertaining to the frequen
y of merges by varyingthe merge interval from the default of 15 minutes to 7m 30s, 30m and 60m.
• C3 - Sensitivity to the proa
tive query interval (P-Int): proa
tive queries arethe primary me
hanism used to update the 
a
he. We gauge the bene�ts of moreor less frequent proa
tive querying by experimenting with di�erent intervals, namely

15m, 30m, 45m (the default value used throughout the rest of the experiments), and
1h 30m.

• C4 - Sensitivity to the proa
tive query spread (P-TTL, P-FW): this s
e-nario experiments with di�erent forwarding strategies 
on
erning proa
tive queries.Spe
i�
ally, we 
hange the value of P-TTL from the default of 4 hops to 3 and 5,and the value of P-FW from 3 neighbors to 2 and 4.
• C5 - Sensitivity to network stability: all previous experiments are 
ondu
tedon a network with dynami
 
hara
teristi
s, where the overlay is modi�ed at runtimeby having new nodes joining the overlay every 4 se
onds in the period between 6hours and 9 hours into simulations. In this set of simulations we aim at assessingthe in�uen
e of su
h network dynami
s on the performan
e of resour
e dis
overy. Inparti
ular, the results obtained in s
enario A are disse
ted to obtain average resultsbefore the dynami
 phase (i.e. before 6 hours in to simulation), during the dynami
phase (i.e. between 6 and 9 hours into simulation), and after the dynami
 phase (i.e.after 9 hours into simulation).D - Comparison with News
ast and Gnutella overlays Similarly to s
enarioA, the improvements in the hit rate introdu
ed by proa
tive 
a
hing are evaluated intwo di�erent overlays, namely News
ast and Gnutella, to assess the in�uen
e of thesele
ted overlay on the behavior of our solution.4.4 ResultsBased on the previously dis
ussed evaluation s
enarios and having detailed the 
onsideredparameters, we present and analyze here the 
orresponding results, whi
h aim at assessingthe e�
ien
y of the proposed resour
e dis
overy approa
h and the sensitivity of the 
a
hingalgorithm to variation of parameters. In the presented graphs, experiments marked witha ∗ indi
ate that the baseline experiment's parameters have been used.
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e Dis
overy4.4.1 A - Bene�ts of proa
tive 
a
hingAs shown in Figure 4.5 (a) our proa
tive 
a
hing strategy signi�
antly improves the hit rate,whi
h is doubled in the 5/3 (i.e. TTL=5, FW=3) and 5/4 query forwarding strategies,and a

ounts for about 40% of the hits in other experiments. Ca
he merges generate anegligible part of the tra�
 (6 KBytes per query), whereas the impa
t of proa
tive querieson the network 
ost is about 10% (Figure 4.5 (b)), and totals about 1MByte per query. Thetra�
 generated by resour
e dis
overy queries forwarded on the overlay slightly in
reaseswhen 
a
hing is enabled, be
ause of the additional forwarding steps that are performedwithin the 
a
he. The bene�ts of proa
tive 
a
hing are noteworthy in the 5/4 experiment,where the hit rate a
hieved with 
a
hing mat
hes that of the 5/5 experiment without
a
hing, but with an overall query 
ost redu
ed by 650 KBytes per query.

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.5: A - Bene�ts of proa
tive 
a
hing4.4.2 B - Bene�ts of proa
tive 
a
hing with repli
ationAs shown in Figure 4.6 (a), repli
ation improves the query hit rate by in
reasing the oddsof �nding results in the overlay. In this regard, one-hop repli
ation provides the best hitrate, both with and without 
a
hing. Even with repli
ation, proa
tive 
a
hing improvessubstantially the performan
e of resour
e dis
overy: in parti
ular, the hit rate in
reasesfrom 13%, without neither repli
ation nor 
a
hing, to 45% when both are employed. Asillustrated in Figure 4.6 (b), the 
ost of proa
tive 
a
hing is 
omparable to that of repli
a-tion, and the improved performan
e a

ounted to 
a
hing remains at the same levels a
rossthe di�erent repli
ation strategies. This result enables us to 
laim that the set of resultsobtained from the 
a
he overlay and that of results from repli
as in the overlay are disjoint,thus the bene�ts of 
a
hing are independent from the repli
ation strategy employed.4.4.3 C1 - Sensitivity to hops traveled in the 
a
he (C-TTL, C-FW)Figure 4.7 (a) shows the impa
t of di�erent 
a
he navigation strategies (i.e. di�erent C-TTL and C-FW) on the hit rate and the bandwidth required for ea
h result (
ost per hit).From the analysis of the results it is 
lear that the more nodes are visited through the 
a
he,the higher the hit rate be
omes. Nonetheless, by fo
using on the 
ost per hit, it emerges
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(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.6: B - Bene�ts of proa
tive 
a
hing with repli
ationthat the best strategy involves forwarding the query for just one hop in the overlay, to allnodes referen
ed in the 
a
he (1/5 ). This result highlights the fa
t that similar peers havea higher probability to remain 
lose to a node in the 
a
he overlay, thus the advantages ofletting the query be forwarded farther in the 
a
he do not s
ale proportionally with thedistan
e traveled.

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.7: C1 - Sensitivity to hops traveled in the 
a
he (C-TTL, C-FW)4.4.4 C2 - Sensitivity to the 
a
he merge interval (M-Int)Ca
he merges allow for in
reasing the amount of information stored in the 
a
hes with alower bandwidth 
onsumption than proa
tive queries. With 
a
he merges peers share thedis
overed resour
es and remove old entries from the 
a
he, whi
h 
ould point to missingnodes. Nonetheless, as shown in Figure 4.8, 
hanging the merge frequen
y does not resultin signi�
ant improvement or degradation of the resour
e dis
overy performan
e, althougha slight bene�t is observed when the merge interval is below or equal to 15 minutes. As themerging pro
ess 
onsumes a negligible amount of bandwidth, more frequent 
a
he mergeshave no negative impa
t on the network overhead and should be favored.
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(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.8: C2 - Sensitivity to the 
a
he merge frequen
y (M-Int)4.4.5 C3 - Sensitivity to the proa
tive query interval (P-Int)As shown in Figure 4.9 (a), more frequent proa
tive querying in
reases the hit rate, sig-naling that better information is stored in the 
a
he. However, a 
ounter-e�e
t of shorterintervals is an in
reased 
ost a�e
ting ea
h query. The di�eren
e between the strategies
on
erning the hit rate is nonetheless minimal, varying from 23% when queries are startedevery 1h 30m to 25% when the interval is redu
ed to 15m. Pertaining to the network over-head, from Figure 4.9 (b) it is evident that more frequent proa
tive queries substantiallyin
rease the overall tra�
.

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.9: C3 - Sensitivity to the proa
tive query frequen
y (P-Int)4.4.6 C4 - Sensitivity to the proa
tive query spread (P-TTL, P-FW)By letting proa
tive queries travel deeper in the network, more hits 
an be found, hen
ebetter 
a
he 
ontents are 
olle
ted. Results depi
ted in Figure 4.10 show nonetheless thatthe small bene�ts of in
reased proa
tive query P-TTL and P-FW do not 
ompensate forthe additional bandwidth 
onsumption.
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(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.10: C4 - Sensitivity to the proa
tive query spread (P-TTL,P-FW)4.4.7 C5 - Sensitivity to network stabilityThe stability of the network, in terms of frequen
y of 
onne
tions and dis
onne
tions ofnodes, in�uen
es signi�
antly the out
ome of resour
e dis
overy operations. In parti
ular,in an unstable network queries may get dis
arded if the node that 
urrently pro
esses themdis
onne
ts from the network. Additionally, 
a
he 
ontents may refer to nodes that havealready left the overlay, whi
h hinders the bene�ts of 
a
he forwardings. In previous s
e-narios the network 
onditions were modi�ed during the simulation, with new nodes joiningthe overlay every 4 se
onds in the period between 6 hours and 9 hours into simulations. Inthis s
enario we 
onsider the three phases of previous experiments separately, namely byanalyzing the stable one before 6 hours into the simulation, the unstable one from 6 hoursto 9 hours, and the phase after the unstable 
onditions from 9 hours until the end of theexperiment (12 hours). As expe
ted, Figure 4.11 shows that the best hit rate (27%) 
an bea
hieved in a stable network; on the 
ontrary, during the dynami
 phase of the simulation,unstable network 
onditions lower the hit rate to 17%, as well as in
reasing the 
ost perhit to about 90 KBytes. After the 
ompletion of unstable 
onditions, the performan
e ofresour
e dis
overy in terms of hit rate and 
ost per hit qui
kly return to satisfa
tory levels.

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.11: C5 - Sensitivity to network stability
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e Dis
overy4.4.8 D - Comparison with News
ast and Gnutella overlaysThis last set of experiments aims at judging whether the bene�ts of the proposed proa
-tive 
a
hing s
heme 
an be maintained on other peer-to-peer overlays. The News
astand Gnutella s
enarios repli
ate the same resour
e dis
overy settings as the baselineexperiment, although with varying forwarding strategies are employed.

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.12: D - Comparison with News
ast (without 
a
hing)News
ast During the simulations, the observed average path length in overlays main-tained using News
ast was between 5 and 6 during stable network 
onditions and around
8 in unstable 
onditions. Although these values are lower than the ones registered forBlåtAnt-S, the hit rate a
hieved with (Figure 4.13) or without (Figure 4.12) 
a
hing islower than the latter. The reason for these results is the fa
t that News
ast topologies
ontain a larger number of links and redundant paths: if a query is forwarded throughsu
h paths, nodes that have already been visited are en
ountered, thus worsening the per-forman
e of resour
e dis
overy. A similar issue 
an be observed with proa
tive 
a
hingqueries, whose tra�
 is higher with News
ast than with BlåtAnt-S. However, it isinteresting to note that the 
ontribution of the 
a
he me
hanism to the hit rate a

ountsfor a similar per
entage with both overlays, namely around 7% in the 5/3 experiment and
15% in the remaining experiments.Gnutella As shown in Figure 4.15, the bandwidth required to maintain theGnutellaoverlay is 
onsiderably higher than with BlåtAnt-S. This negatively in�uen
es the overall
ost of the resour
e dis
overy pro
ess. Moreover, the hit rate in the Gnutella overlay islower than with BlåtAnt-S in all but the 5/8 s
enario, both with or without 
a
hing.However, as observed with News
ast, the 
ontribution of the 
a
he me
hanism to the hitrate a

ounts for a similar per
entage with both overlays.4.5 A

ura
y of the resultsThe presented data refer to an average over 5 simulation runs. For the hit rate and the 
ostper query, an average over a total of 17150 queries over all runs in ea
h s
enario was 
on-
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(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.13: D - Comparison with News
ast (with 
a
hing)

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.14: D - Comparison with Gnutella (without 
a
hing)

(a) Hit rate / Cost per hit (b) Cost per queryFigure 4.15: D - Comparison with Gnutella (with 
a
hing)sidered. The observed relative standard deviations are minimal and do not invalidate our�ndings. More spe
i�
ally, the average relative standard deviation for the hit rate a
rossall s
enarios was 2.52%, and for the hit rate 
ontributed by the 
a
he 1.63%. Con
erning
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e Dis
overynetwork tra�
, the obtained relative standard deviations for the query 
ost and the hit
ost are 1.44% and 2.16% respe
tively.4.6 SummaryIn this 
hapter we presented a te
hnique to improve resour
e dis
overy in unstru
tured over-lays using lo
al short
ut 
a
hes. Ca
hes are maintained by periodi
ally exe
uting proa
tiveresour
e dis
overy in order to retrieve identi�ers of other nodes with similar resour
e pro-�les, that are thus likely to ful�ll the same queries. To further improve the performan
eof our system, while limiting the network bandwidth 
onsumption, we in
orporated in ourapproa
h epidemi
 ex
hange of information between 
a
hes. Resour
e dis
overy queriesare broad
asted on the network using a probabilisti
 �ooding proto
ol; when a mat
hingnode is rea
hed, sear
h 
ontinues through 
a
he short
uts, providing additional resultswith limited 
ost. We evaluated our approa
h through extensive experimentation and as-sessed its merits 
ompared to traditional �ooding methods. We have been able to realizeimprovements in the hit rate with little impa
t on the generated tra�
. Furthermore, ananalysis of the bene�ts of our s
heme on di�erent peer-to-peer overlays proved its inde-penden
y and validated its appli
ability on diverse peer-to-peer overlays with 
onsistentlysubstantial improvements of the hit rate.
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hapters have dealt with the problem of 
onne
ting remote sites by meansof a peer-to-peer overlay as well as with information retrieval. Building on the solutionsthat we have a

ordingly introdu
ed, in this 
hapter we 
onsider the problem of e�
ientlyexploiting the 
omputational power of loosely inter
onne
ted 
omputers. The term that isused to de�ne su
h large s
ale distributed systems devoted to solving massive 
omputingtasks is grids. In this 
ontext, grid 
omputing refers to all a
tivity 
arried on a grid.Grid 
omputing leverages the 
apabilities of a large number of geographi
ally dispersedsites by lowering the barriers of entry for both exploiting and 
ontributing resour
es [119℄.
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hedulingGrids 
an be used to solve 
omputationally intensive problems that would not be e�
ientlysolved by a single resour
e, possibly be
ause of time or spa
e limitations. In this respe
t,a grid ideally provides a �exible infrastru
ture that s
ales e�
iently as the number ofparti
ipating resour
es in
reases [81℄. In 
ontrast to peer-to-peer networks, grids 
onsistof more powerful resour
es and better 
onne
ted infrastru
tures, and rely on persistentmanagement servi
es [116℄. A widely a

epted notion of the grid 
onsiders it as a pool offederated resour
es within distributed virtual organizations that manage a

essing poli
iesand provide transparent on-demand 
omputing [120, 119℄. Grids have been su

essfully de-ployed in several s
ienti�
 s
enarios [72℄, and have attra
ted a noteworthy resear
h streamaimed at improving the underlying infrastru
tures in terms of a

essibility [194℄, e�
ien
y[125℄ and reliability [165℄.As pointed out in [253℄, e�e
tive grid 
omputing depends on how e�
iently tasks are as-signed to available resour
es. Grid s
hedulers must de
ide whi
h resour
es to s
hedule a jobon, based on the available information about their status. In this regard, grid s
hedulingand allo
ation strategies must 
onform to the demands of the users (i.e. QoS agreementssu
h as response time, 
ost, et
.), and balan
e them a

ording to the usage poli
ies setby resour
e providers (i.e. se
urity, exe
ution e�
ien
y, resour
e utilization, et
.). Grids
heduling 
omplexity is further exa
erbated by the fa
t that there exist two levels of op-eration, namely lo
al-s
heduling and meta-s
heduling. More spe
i�
ally, lo
al-s
hedulingis 
on
erned with managing lo
al tasks' exe
ution poli
ies and resour
es on every 
om-puting node, whereas meta-s
heduling provides high-level 
oordination and or
hestrationbetween di�erent lo
al s
hedulers by assigning tasks to the appropriate 
omputing nodes,typi
ally within a virtual organization. From this point of view, in order to a
hieve optimals
heduling at both levels, the trade-o� between ful�lling the requirements set by lo
al usagepoli
ies, and by virtual organizations must be addressed. In this regard, meta-s
hedulingis often hindered by the limited availability of up-to-date information about grid nodes,whi
h 
an result in less-than-optimal de
isions.To satisfy the aforementioned issues, 
urrently deployed grid infrastru
tures [118, 243℄rely on 
entralized or hierar
hi
al s
hemes to support all the a
tivities required to runthe grid: resour
e dis
overy, resour
e and data management, meta-s
heduling, as well asse
urity servi
es. The business requirements imposed by virtual organizations inherentlysupport su
h an organizational model, although it is important not to negle
t the 
on
retedemand for �exible, autonomi
, and self-manageable grids, in order to redu
e deployment
osts, in
rease reliability, and meet dynami
 users' needs [23℄.Grid systems have an inherent heterogeneous, dynami
 and distributed nature [37℄;as noted in [164℄, 
urrent designs must fa
e several 
hallenges that 
urrently limit theprospe
ts and full bene�ts of grid 
omputing. Among the 
on
erns highlighted in [164℄,our resear
h fo
uses on problems related to s
hedulers' interoperability and to relian
eon 
entralized meta-s
heduling solutions. In this regard, we aim at enabling fully de
en-tralized meta-s
heduling to e�e
tively 
ope with the 
hallenges that raise barriers to awider adoption of grids. Our vision is supported by the multitude of network appli
ationsthat have already re
ognized and exploited the advantages of distributed and de
entralizedapproa
hes. Re
ent advan
es in the underlying network te
hnologies (i.e. ubiquity, linkbandwidth, et
.) also 
ontribute towards this dire
tion, and an established shift toward de-
entralized solutions has been observed also within grid ar
hite
tures, with the emergen
e
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entralized resour
e dis
overy me
hanisms [142, 259℄, fully distributed load-balan
ingsolutions [61℄, and de
entralized meta-s
heduling algorithms [272℄.In agreement with our vision of a grid supported by de
entralized servi
es, this 
hapterpresents a fully distributed meta-s
heduling proto
ol, named aria, that supports 
oordi-nation between nodes to enable e�
ient global dynami
 s
heduling a
ross multiple sites.The meta-s
heduling pro
ess is performed online, and takes into a

ount the availabilityof new resour
es as well as 
hanges in a
tual allo
ation poli
ies. Moreover, the proposedapproa
h aims at addressing the s
alability and adaptability of grids, to optimally exploitdynami
ally 
hanging grid resour
es. S
alability 
on
erns both the size of the grid andthe a
tual load. On one side new grid nodes must seamlessly merge into the grid system;on the other side, jobs must be distributed over all suitable nodes to avoid hot spots, aslong as requirements are met. We refer to adaptability as the ability of s
heduling andres
heduling tasks a

ording to global or lo
al s
heduling poli
y 
hanges. In this respe
t,a balan
e between adaptability and stability is required to avoid 
oupling situations thathave an adverse e�e
t on performan
e,5.1 Grid Meta-S
hedulingThe bene�ts of large-s
ale distributed 
omputing largerly depend on the ability of the gridmiddleware to manage large sets of heterogeneous resour
es, and perform optimal taskallo
ation on these resour
es. From this point of view, in order to meet the expe
tationsusers and resour
e owners, grid s
heduling must allo
ate jobs on the most suitable ma
hinesand avoid overloading just a few of the most 
apable ones. To this extent, meta-s
hedulingservi
es play an important role that delineate the 
apabilities and performan
e of a gridinfrastru
ture.This 
hapter fo
uses on de
entralized s
heduling me
hanisms, namely by enabling fullydistributed meta-s
heduling a
ross heterogeneous nodes, while additionally providing dy-nami
 load-balan
ing support by res
heduling jobs a
ross nodes whenever possible. Tobetter understand the issues raised by grid job allo
ation, in this se
tion we review relatedwork 
on
erning both meta-s
heduling and load-balan
ing, and dis
uss the transition from
entralized approa
hes toward de
entralized ones.While fully de
entralized 
ooperative grid solutions bear advantages over their 
entral-ized 
ounterparts, interoperability of the diverse systems involved is often hindered by in-frastru
tural or organizational problems, su
h as la
k of standardization [112℄. Although anumber of proje
ts have been started to promote 
ollaboration between proje
ts, and to im-plement standards for fa
ilitating the 
ommuni
ation between di�erent platforms [230, 44℄,interoperability remains one of the open issues for future generation grids [220, 110℄. Asdis
ussed in [134℄, to alleviate these issues, 
ollaborative s
heduling solutions should avoidenfor
ing 
ontrol over lo
al resour
es by establishing a 
lear separation between global andlo
al resour
e management. Furthermore, resour
e management and s
heduling should relyon adaptive de
ision-making in order to 
ope with unpre
edented situations. Moreover,meta-s
heduling should also be 
on
erned with load balan
ing through dynami
 reallo-
ation of jobs. Unfortunately, whereas task allo
ation on a single site bene�ts from theavailability of lo
al, 
omplete, and pre
ise information about available resour
es, de
en-tralized approa
hes have to tradeo� between information and network tra�
.
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hedulingCentralized S
heduling Traditional grid models [118, 243℄ rely on 
entralized or hi-erar
hi
al meta-s
hedulers that have a global view of the resour
es shared on the gridor by their virtual organization. Resear
h has 
ome up with very e�
ient 
entralizedmeta-s
heduling me
hanisms [17℄ that 
an take full advantage of a global view of the gridand provide optimal allo
ation of tasks on resour
es. It should be noted that 
entralizeds
heduling does not ne
essarily require a 
orresponding 
entral information repository, but
an rely on distributed information systems [232℄. Nonetheless, these approa
hes still 
on-tain bottlene
ks for s
alability of the system, as well as single points of failure that maya�e
t the robustness of the grid as a whole. An extensive literature review of 
entralizeds
heduling me
hanisms is outside the s
ope of this work; an in-depth analysis of relatedstate-of-the-art 
an be found in [96℄.De
entralized S
heduling The design of de
entralized and adaptive s
heduling algo-rithms is 
onsidered in [256℄, with nodes performing load-balan
ing within a limited setof neighbors. Two strategies are proposed, namely transferring jobs at pre
ise intervalsor depending on their arrival time; both strategies have the goal of a
hieving similar to-tal exe
ution time on all nodes. In the dire
tion of redu
ing the average response time,[112℄ proposes an adaptive de
entralized me
hanism that employs an evolutionary fuzzyalgorithm to sele
t the best site for job delegation among the set of all possible 
andidates.The Organi
 Grid [68℄ introdu
es a novel paradigm that rede�nes the grid as self-organized biologi
ally inspired 
omplex system of agents providing de
entralized s
hedulingfor heterogeneous tasks on a large number of resour
es. Nodes are organized as a tree, withthe root being the job originating node, and faster nodes lo
ated 
loser to it; nodes 
anpush tasks down the tree depending on the a
tual load of their 
hildren.Colle
tive intelligent behavior of mobile agents has been also exploited in [61℄ to sup-port grid task load-balan
ing in a fully distributed environment. Job requirements andresour
es are pro�led using a performan
e analysis tool 
alled PACE [217℄, and mat
hedto appropriate resour
es by the agents. Re
ognizing the importan
e of de
entralization andself-organization for the future of grid systems, [104℄ presents a distributed grid s
hedul-ing framework where nodes group into 
ommunities a

ording to resour
e similarities anddisseminate their a
tual state. The s
heduling pro
ess is de
entralized and makes use ofinformation about remote nodes in order to �nd the best resour
es to ful�ll a request.The distributed meta-s
heduling model presented in [272℄ operates on the prin
iple ofsubmitting a job to the least loaded sites and subsequently revoking it on all but the onethat has 
ommen
ed its exe
ution. An evident drawba
k of this model is the overloadingof a large number of s
hedulers with jobs that are frequently 
an
elled. Another de
entral-ized s
heduling and load-balan
ing te
hnique is detailed in [25℄, whi
h depends on nodesretaining jobs or submitting them to their neighbors a

ording to a heuristi
 on lo
al load.A di�erent approa
h is taken in [179℄, where the sele
tion of a target neighbor for jobdelegation is driven by the available bandwidth; this is made possible by the adoption ofa simplisti
 model that 
onsiders all tasks as identi
al and fo
uses on the time required totransfer data.The potential of applying peer-to-peer te
hnologies to support de
entralized grid s
hedul-ing is highlighted in [109℄, with a fully distributed solution where nodes perform a gossip-based exploration of the network for the purpose of generating an optimal s
hedule on
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ol 109the dis
overed resour
es. Peer-to-peer gossiping proto
ols are also employed in [103℄, butwith the goal of disseminating the state of the available resour
es a
ross the grid; thisinformation is 
a
hed by remote nodes and used to optimally allo
ate in
oming jobs.The GridIS [297℄ s
heduling algorithm employs a peer-to-peer 
ommuni
ation modelthat enables resour
e providers to bid for the delegation of a job. Job requests are submittedto the grid through a portal that broad
asts them in an unstru
tured peer-to-peer overlaynetwork. The obje
tive of GridIS is to satisfy both resour
e 
onsumers and providers, byensuring high su

essful exe
ution rates, respe
tively fair allo
ation of bene�ts. Similarly toGridIS, the work presented in [99℄ makes use of a stru
tured peer-to-peer overlay networkto dis
over nodes wishing to 
arry out a job; furthermore, res
heduling is exploited to avoidstarvation of jobs failing to be exe
uted.In 
ontrast to the aforementioned resear
h approa
hes, we aim at supporting fullydistributed task meta-s
heduling by means of a lightweight 
oordination proto
ol whi
htakes into a

ount the dynami
ity and heterogeneity of resour
es. Among the distin
tivefeatures that di�erentiate our solution, we highlight the fa
t that it does not require detaileds
heduling information from other nodes, and that it promotes asyn
hronous peer-to-peerintera
tion between nodes as well as overall self-organization. In this regard, we assert thatour solution 
ontributes to the previously mentioned drive towards �exible and autonomi
grids.5.2 aria Proto
olThe aria proto
ol [55℄ aims at providing fully distributed task meta-s
heduling a
ross aheterogeneous grid. The name aria (air in Italian, denoting the aim to be lightweight)
omes from the initials of the di�erent message types de�ned in our proto
ol, namelyREQUEST, ACCEPT, INFORM, and ASSIGN (Table 5.1). An additional STATUSmessage is employed by the proto
ol to support syn
hronized exe
ution of interdependenttask pools in advan
e reservation s
heduling. In the following we detail the operationalphases of the proto
ol, as well as the information ex
hanged between nodes by means ofthe aforementioned messages.5.2.1 AssumptionsOne of the fundamental design prin
iples of the aria proto
ol is that of being agnos-ti
 to s
hedulers, namely not requiring nor depending on any parti
ular lo
al s
hedulingpoli
y. Moreover, to emphasize the idea of promoting fully distributed operation, it isassumed that grid nodes are 
onne
ted by means of a peer-to-peer overlay network. Thealgorithm nonetheless requires that dire
t 
ommuni
ation between any pair of nodes 
ouldbe established. A

ording to these premises, and for evaluation purposes, we base ourexperiments on a self-organized overlay maintained by BlåtAnt-S, as it a

ounts for alower bandwidth 
onsumption than the -R version.aria supports all phases of the job exe
ution, from submission to 
ompletion, andexploits the time-to-exe
ution to perform dynami
 res
heduling of jobs a
ross grid nodes,thus a
hieving better global throughput and load-balan
ing. To obtain resour
es for jobdelegation, a spe
i�
 REQUEST message is de�ned by the proto
ol: this task 
an either
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omplished by pro
essing su
h message on a suitable grid information system orby broad
asting it on the network using a dedi
ated fully distributed resour
e dis
overyproto
ol. Be
ause of its fully distributed design, job submission 
an be performed fromany node; furthermore, exe
ution may o

ur on any node whose resour
e pro�le mat
hesthe job requirements. For simpli
ity, we do not allow nodes to de
line in
oming jobsthat have been already a

epted, and while every node may hold several jobs within itss
heduling queue, only one job at a time 
an be exe
uted. Bat
h jobs are assumed to beindependent, while advan
e reservations 
an be made for jobs 
omposed of interdependenttasks. Moreover, to avoid 
he
kpointing issues, preemption and migration of running jobsare not 
onsidered, while se
urity issues are also out of the s
ope of this resear
h.To des
ribe resour
e and job pro�les the proto
ol does not spe
ify any parti
ular for-mats: a
tual implementations may 
hoose to use one of the available job des
riptions
hemas su
h as JSDL [115℄. In a

ordan
e with this view, also the mat
hing logi
 deter-mining whether a task 
an be exe
uted on a spe
i�
 node is left to spe
i�
 implementations,whi
h may 
hoose to de�ne job a

eptan
e rules based not only on pro�le mat
hing butalso a

ording to se
urity, or a

ounting poli
ies. Finally, exe
ution of tasks and transmis-sion of task-related data between nodes are not within the fo
us of this resear
h. In thisregard, the evaluation provided in the following will assume that jobs are responsible fortransferring the required data on the node where exe
ution takes pla
e.Table 5.1: Proto
ol Messages and FieldsACCEPTNode's address Job UUID CostREQUESTInitiator's address Job UUID Job Pro�leINFORMAssignee's address Job UUID Job Pro�le CostASSIGNInitiator's address Job UUID Job Pro�leSTATUSJob UUID Status value5.2.2 Job Submission PhaseThe �rst phase of the proto
ol 
overs the submission of jobs and their initial handlingby the node that ea
h job was submitted to. Be
ause the proto
ol aims at a
hievingoptimal grid-level meta-s
heduling, submitting a job to a parti
ular node does not ensurethat exe
ution will take pla
e lo
ally, unless su
h a requirement is spe
i�ed in the jobdes
ription.To univo
ally tra
k jobs s
heduled on the grid, ea
h job is assigned a universal uniqueidenti�er (UUID). Nodes re
eiving job submissions from users or appli
ations are referred toas initiators for these jobs. In order to �nd 
andidates for the exe
ution of a job, initiatorsissue resour
e dis
overy queries a
ross the grid by means of REQUEST messages. Thesemessages 
an either be sent to a grid information system or broad
asted to a random
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ol 111subset of nodes of a peer-to-peer overlay. The submitting node then waits for a prede�nedtimelapse for in
oming query replies. When pools of interdependent tasks are submittedto a grid node, ea
h task is independently managed by means of separate REQUESTmessages.Besides the initiator's address and the job UUID, a REQUEST message 
ontains thepro�le of the resour
es required to 
arry out the job, whi
h also spe
i�es an Estimatedjob Running Time (ERT) a

ording to a grid-level a

epted baseline regarding 
omputingpower. The estimated running time 
an be 
omputed by means of a job pro�ling toolsu
h as PACE [217℄. Job pro�les may also de�ne additional job exe
ution 
onstraints, forexample to prevent exe
ution of a job outside the boundaries of a virtual organization.5.2.3 Job A

eptan
e PhaseIn a fully distributed implementation, upon re
eption of a REQUEST message, a nodedetermines whether the requirements of the job pro�le mat
h its own resour
es. If therequest 
annot be satis�ed, the message is further forwarded on the peer-to-peer overlay,otherwise a 
ost value for the job based on a
tual resour
es and 
urrent s
heduling is
omputed. The 
ost information is sent ba
k to the job's initiator by means of anACCEPTmessage. If the REQUEST message is pro
essed by the grid information system, thelatter would either reply a

ording to available information or forward the message to ea
hmat
hing node, whi
h would then reply dire
tly to the job initiator.The 
ost value depends on the adopted lo
al s
heduling state, with lower values beingused to indi
ate better o�ers. The initiator evaluates in
oming ACCEPT responses, andsele
ts the best quali�ed node (i.e. the node providing the lowest 
ost). The job is delegatedto the latter, whi
h is referred to as the 
urrent assignee, by sending an ASSIGN message.In order to keep tra
k of the s
heduling status of ea
h job, the initiator and the assigneeboth store a referen
e to ea
h other: whenever the assignee 
hanges, the initiator is noti�ed.Currently, three 
ost fun
tions have been 
onsidered, namely Estimated Time To Com-pletion (ETTC), Negative A

umulated Lateness (NAL) and Total Delay Time (TDT) forbat
h, respe
tively deadline and advan
e reservation s
hedulers. As we assume that dead-line s
heduling o�ers and advan
e reservations ones are not mixed with bat
h ones, valuesprodu
ed by di�erent fun
tions do not ne
essarily need to be 
omparable.Estimated Time To Completion (ETTC) This fun
tion de�nes the 
ost for a job jas: ETTCcost(j) = ETTCjwhere ETTCj 
orresponds to the relative time that the job is expe
ted to �nish a
-
ording to the lo
al s
heduling poli
y and a
tual load of the node (determined by thes
heduling queue).Negative A

umulated Lateness (NAL) Targeted at deadline s
heduling algorithms,it 
omputes the 
ost for a job j and an existing lo
al s
heduling queue Q as follows:
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hedulingNALcost(j) =
∑

job ∈ Q′

δ(job,Q′) ∗ |γjob|with
Q′ = Q ∪ {j}

γjob = deadlinejob − ETCjob

δ(job,S) =







−1 γjob ≥ 0,∀ job ∈ S,

0 γjob ≥ 0 ∧ ∃ w ∈ S : γw < 0,

1 otherwise
ETCjob refers to the absolute time that the job is expe
ted to �nish a

ording to thelo
al s
heduling poli
y and the a
tual load of the node (determined by the s
heduling queue

Q′), while deadlinejob is the upper time limit for job 
ompletion; hen
e γjob represents thelateness of the job. If no deadline is missed, the 
ost fun
tion returns a negative result,with smaller values indi
ating better s
heduling solutions.Total Delay Time (TDT) This fun
tion is used to evaluate the opportunity of allo
at-ing a time-slot in advan
e reservation s
heduling. The 
ost value is determined by the sumof all the estimated delays for s
heduled jobs; if the sum is zero, the 
ost is the negativevalue of the sum of free time between jobs in order to have s
hedules with longer idle timesrepresent better 
hoi
es. For an existing lo
al s
heduling queue Q the 
ost is thus:TDTcost(Q) =

{

−idleQ γQ = 0,

γQ γQ 6= 0with
idleQ = sum of idle time between s
heduled jobs
γQ = max(0,

∑

job ∈ Q

(ESTjob −ARSjob))

ESTjob = estimated job start a

ording to lo
al s
hedule
ARSjob = advan
e reservation slot beginning timeWhereas positive values a

ount for the inability of the node to 
ope with reservations,negative values are an inverse value of the idleness of a node, hen
e smaller values indi
atebetter s
heduling options.5.2.4 Dynami
 Res
heduling PhaseAn important aspe
t of the aria proto
ol is the dynami
 res
heduling of jobs. Thissupports the s
alability and adaptability of the meta-s
heduling me
hanism by enablingjob re-allo
ation to re�e
t possible 
hanges in the state and availability of resour
es. This
an typi
ally be the result of new nodes 
onne
ting to the grid, or existing jobs terminatingearlier than predi
ted or being 
an
elled.
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ol 113At the time of job assignments, assignees represent the initiators' per
eived optimalsolutions for job exe
ution; however, it should be expe
ted that better alternatives maypotentially arise in the future. A

ordingly, the assignee attempts to �nd 
andidatesfor res
heduling of jobs in its queue while their exe
ution has not yet started. For thispurpose, INFORM messages, whi
h are either pro
essed by a grid information systemor disseminated a
ross the network, are employed. Be
ause the res
heduling pro
ess isexe
uted periodi
ally, a fully distributed implementation should make use of a low-overheaddis
overy proto
ol to avoid ex
essive bandwidth 
onsumption. In our evaluation, a fullydistributed probabilisti
 �ooding proto
ol is used.The stru
ture of INFORM messages relates to that of REQUEST messages, in thatthey both 
ontain a full des
ription of the job's pro�le. The goal of INFORM messagesis to dis
over nodes that might 
arry out the exe
ution of the job at a lower 
ost than the
urrent assignee. For this reason, INFORM messages also 
arry the a
tual 
ost value, as
omputed by the aforementioned 
ost 
al
ulation fun
tions. Nodes will typi
ally generateINFORM messages for a set of jobs in their queue a

ording to a sele
tion me
hanism.For bat
h s
hedulers jobs with the largest waiting times are preferentially sele
ted, fordeadline s
hedulers jobs with the least lateness are 
hosen, whereas for advan
e reservations
hedulers tasks with the largest delays are 
onsidered.The behavior of a node upon re
eption of INFORM messages is similar to the one
on
erning REQUEST messages, with the node �rst 
he
king whether it 
an satisfy thejob's requirements and then evaluating the 
orresponding 
ost for exe
ution. Unlike RE-QUEST messages, an ACCEPT reply will only be sent to the 
urrent assignee if a lower
ost 
an be guaranteed. Thresholds may be introdu
ed to prevent res
heduling when thebene�t does not justify the additional overhead, for example if the exe
ution time is onlyredu
ed by a small fra
tion or if the a
tual job transfer time surpasses the bene�t to begained from the res
heduling operation.The res
heduling pro
ess is 
ompleted when the 
urrent assignee re
eives the ACCEPTmessage and a

ordingly reassigns the job to the new assignee by means of an ASSIGNmessage. To ease tra
king of jobs, and enable failsafe me
hanisms in the event of anassignee's 
rash, res
heduling a
tions are noti�ed to the job's initiator by means of aSTATUS message with value SCHEDULED.5.2.5 Job Exe
ution PhaseThe last 
on
ern of the proto
ol is to manage the exe
ution of jobs. Whereas in bat
h,deadline, and simple advan
e reservation s
heduling ea
h job 
an be started as soon as itrea
hes the head of the s
heduling queue, the s
heduling of pools of dependent tasks is more
ompli
ated. More pre
isely, tasks in ea
h pool depend on ea
h other, and thus need to be
on
urrently exe
uted. This situation prevents s
heduling of multiple dependent tasks inthe same job queue if the available resour
es on the node pre
lude their parallel exe
ution.Moreover, the meta-s
heduling proto
ol must implement a me
hanism to syn
hronize thestart of the exe
ution of ea
h task in a pool.aria deals with this issue by means of STATUS messages: when a job is ready forexe
ution, the initiator is noti�ed with a STATUS message with value READY. Thejob initiator waits until all tasks in a pool are ready, and then noti�es the 
orresponding
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Figure 5.1: Job s
heduling and exe
ution statesremote nodes with a RUNNABLE noti
e. Nodes re
eiving su
h noti�
ation may 
hangethe exe
ution state of the 
orresponding jobs to RUNNABLE, so that the s
heduler 
anbegin their exe
ution, subsequently 
hanging their status to RUNNING. A node 
an alsorevoke the exe
ution of a pool, by sending a STATUS message with value REVOKE, tothe job initiator, whi
h then relays it to all job tasks' assignees. Jobs are automati
allyrevoked when a node has one task ready for exe
ution and one or more dependent tasksin the same queue that 
annot be 
on
urrently started. Figure 5.1 illustrates the jobexe
ution states and all possible transitions. To prevent denial of servi
e atta
ks from amisbehaving node, ea
h node involved in the exe
ution of a task (initiators and assignees)
an ask for its revokation, for example if it delays other tasks for a too long period.5.2.6 ExampleTo better understand the di�erent phases of the proto
ol we propose here a simple exampleof the submission, a

eptan
e, and dynami
 res
heduling steps of a single task job. We
onsider an overlay 
omposed of 13 nodes, depi
ted in Figure 5.2, and a fully distributedimplementation of the proto
ol.At step 1, a job is submitted to node A, whi
h be
omes the initiator of that job andis responsible for the initial delegation. Next, a resour
e dis
overy operation is started bysending REQUEST messages on the network (step 2). All nodes mat
hing the job pro�le
ompute the estimated 
ost a

ording to their s
heduling poli
y, and reply to the initiatorwith an ACCEPT message: in this example we suppose that replying nodes are B,F , and

P (step 3). The lowest 
ost o�er (in this example, the one submitted by node B) is 
hosenby the initiator at step 4, and the job is assigned by means of a ASSIGN message. Theassignee (B) replies with a STATUS message with value SCHEDULED to signal thatthe job has been 
orre
tly s
heduled.Be
ause the resour
e availability on the network may 
hange, before the start of theexe
ution, B tries to res
hedule the job, by sear
hing for lower 
ost o�ers: a

ordingly,INFORM messages are transmitted on the network (step 5). Ea
h re
eiving node 
he
kswhether its resour
e pro�le mat
hes the job des
ription and whether it 
an provide alower exe
ution 
ost. If both 
onditions hold, an ACCEPT message is sent to the 
urrentassignee (step 6), and the res
heduling pro
ess is 
on
luded by transferring the job to thenew assignee (step 7), and notifying the initiator of the 
hange of assignee by means of aSTATUS message from Y with value SCHEDULED. As long as exe
ution of the job hasnot yet 
ommen
ed, several res
heduling operations 
an take pla
e.
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Figure 5.2: Job submission, a

eptan
e and res
heduling example5.3 EvaluationTo evaluate the behavior of the aria proto
ol in a grid environment, an in depth analysisby means of simulations was performed. To take into a

ount all the 
hara
teristi
s ofthe meta-s
heduling problem, several aspe
ts are 
onsidered: s
heduling optimality, adap-tiveness, s
alability, 
onsumed network bandwidth, and load-balan
ing. More spe
i�
ally,our evaluation fo
uses on measuring the average total exe
ution time, the tra�
 generatedby proto
ol messages, the number of idle nodes, of delayed jobs in advan
e reservations
heduling, and of missed deadlines. From this point of view, our analysis aims at bothassessing the qualities of the dynami
 meta-s
heduling proto
ol, as well as providing asensitivity analysis of the main proto
ol parameters, in order to understand their in�uen
eon the aforementioned assessment metri
s. This se
tion introdu
es the evaluation setupand the details of ea
h of the 
onsidered s
enarios, a summary of whi
h 
an be found inTable 5.2.All s
enarios are evaluated on a 
ustom event-based simulation platform, where 
om-muni
ation laten
y between nodes is based on realisti
 timing as in Chapter 3. For ea
hs
enario 5 simulation runs were performed.5.3.1 Overlay networkWe assume that grid nodes are 
onne
ted by means of an unstru
tured peer-to-peer overlay,and that nodes trust ea
h other and intera
t dire
tly among them. A

ordingly, we employ
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enario Fo
us of the evaluationA Bene�ts of dynami
 res
heduling with bat
h s
hedulersB Robustness and load balan
ing 
apabilitiesC S
alabilityD Bene�ts of dynami
 res
heduling with deadline s
hedulersE Bene�ts of dynami
 res
heduling with advan
e reservationF SensitivityTable 5.2: Summary of the meta-s
heduling evaluation s
enariosan overlay of 500 nodes 
onstru
ted and maintained using BlåtAnt-S. The algorithmparameters values are as de�ned in the baseline s
enario presented in Chapter 3, althoughfor our evaluation purposes the network is maintained stable; an ex
eption is the s
enariofo
using on the s
alability, where an expanding overlay growing up to a size of 700 nodesis employed.5.3.2 Grid resour
esEvaluation of the proto
ol is 
ondu
ted on an overlay of heterogeneous resour
es, wherethe 
apabilities of ea
h node are determined by its pro�le. Resour
e pro�les are 
omprisedof di�erent �elds that in
lude both hardware and software properties of the ma
hine.Similarly to the evaluation of resour
e dis
overy presented in Chapter 4, the followingaspe
ts have been 
onsidered: the implemented ar
hite
ture (e.g. amd64, power, et
.),available memory, available disk spa
e, and operating system (e.g. Linux, Solaris, et
.).Upon initialization, the simulator randomly assigns a pro�le to ea
h node a

ording to aprobability distribution de�ned as follows:
• Ar
hite
tures are 
hosen a

ording to the list published on the TOP500 Super
om-puting Sites (www.top500.org) at the time of the writing of this thesis. The probabil-ity distribution is as follows: amd64 87.2%, power 11%, ia-64 1.2%, spar
 0.2%,mips 0.2%, ne
 0.2%;
• Available Memory and Disk Spa
e are both independently and uniformly 
hosenas either 1, 2, 4, 8, or 16 Gigabytes;
• Operating Systems installed on ea
h node are based on the aforementioned TOP500list, with the following distribution: Linux 88.6%, Solaris 5.8%, Unix 4.4%, Win-dows 1%, BSD 0.2%.To a

ount for heterogeneity in the 
omputational 
apabilities of ea
h node, ea
h sys-tem has an asso
iated real value performan
e index p between 1 and 2, that 
ompares its
omputing power to a baseline referen
e. The latter 
orresponds to the hardware 
on�gu-ration used to 
al
ulate the Estimated job Running Time (ERT). The simulator uses thisindex to derive the Estimated job Running Time on a parti
ular node (that is referred toas ERTp). More spe
i�
ally, the ERTp is de�ned as the ERT divided by the performan
eindex p.
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e requirements for submitted jobs are de�ned a

ording to the 
hara
teris-ti
s de�ned by resour
e pro�les. User submitted jobs are 
reated by means of a randomgenerator, and submitted to random nodes in the overlay that subsequently initiate theirdelegation by sending REQUEST messages on the network. Ea
h job is 
hara
terized byparameters de�ning the resour
es required to exe
ute the job. This information is mat
hedagainst grid resour
es pro�les, and in
ludes the required ar
hite
ture, memory, disk spa
e,and operating system. The values of ea
h job parameter are randomly 
hosen. To evalu-ate the impa
t of the distributions of requests on the performan
e of the meta-s
hedulingme
hanism, two probability distributions have been 
onsidered: the �rst one, 
onsiders thesame probability distribution as used for node pro�les, while the se
ond one is based on auniform probability distribution. Whereas the former distribution is employed in all of ourevaluation s
enarios, the latter is 
onsidered only for a sensitivity analysis. Job des
riptorsalso de�ne an ERT, whi
h is randomly assigned a

ording to a normal distribution N (µ, σ)with µ = 2h30m, σ = 1h15m, using a lower bound of 1h and an upper bound of 4h toavoid extreme 
ases.In a real grid, the ERT only provides a rough estimation of the a
tual job runningtime. A

ordingly, in our simulation ea
h node 
omputes an A
tual Running Time (ART)by purposely introdu
ing estimation errors. The ART for a job j (whi
h is unknown untilexe
ution 
ompletes) on a node with performan
e index p is derived from ERT, ERTp, anda relative error ε as follows:
ARTj,ε = ERT p

j + driftj,εwith
driftj,ε = U[−1,1] ∗ ERTj ∗ εIn our evaluation we assume an a

ura
y of ±10% of the Estimated job Running Time(ε = 0.1).Unless otherwise spe
i�ed, in all s
enarios jobs are submitted starting from 20 minutesup until 3 hours 7 minutes into the simulation. A new job is submitted to a random nodein the overlay at 10 se
onds intervals, resulting in a total of 1000 jobs submitted to the gridin ea
h s
enario. For deadline s
heduling s
enarios, jobs' deadlines are set to an absolutetime equal to the 
urrent time plus their ERT plus an additional random interval followingthe aforementioned normal distribution, with µ = 15h, σ = 7h30m, hen
e, the deadline isset 15 hours after the expe
ted absolute 
ompletion time. In advan
e reservation s
enarios,the reservation start is set 15 hours after the submission time on average, based on the samedistribution as for deadlines. In advan
e reservation of task pools, ea
h job is 
omposedof a pool of interdependent tasks, the size of whi
h is 
hosen uniformly at random in therange [1, 4]; be
ause of their interdependen
y, jobs in the same pool 
an be exe
uted onlyif simultaneously started.5.3.4 Tra�
 EvaluationTo evaluate the amount of bandwidth 
onsumed by the meta-s
heduling proto
ol, thefollowing tra�
 estimations have been 
onsidered for the aria messages overhead:
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− REQUEST, INFORM, and ASSIGN: 5 KBytes;
− ACCEPT and STATUS: 1 KByte.Our evaluation fo
uses on a fully distributed implementation of the meta-s
hedulingme
hanism, thus REQUEST and INFORM messages are disseminated on the networkusing a probabilisti
 �ooding proto
ol. Con
erning broad
asting strategies, REQUESTmessages are forwarded on the network at a distan
e of 9 hops, to at most 4 neighborsat ea
h step. Conversely, in s
enarios with dynami
 res
heduling, INFORM messages aregenerated for at most 2 s
heduled jobs 
andidate for res
heduling every 5 minutes, and areforwarded at a distan
e of 8 hops, to at most 2 neighbors at ea
h step. These values arebased on the properties the underlying peer-to-peer overlay management algorithm andthe parameters set for its 
onstru
tion, and guarantee a near optimal operation withoutoverloading the network.5.3.5 Lo
al S
heduling Poli
iesThe aria proto
ol aims at providing a meta-s
heduling servi
e that is independent ofthe lo
al s
heduling poli
y implemented by ea
h node. Hen
e, we assume that di�erents
hedulers are available. In our simulations, the s
heduling poli
y is randomly assigned toea
h node upon 
reation, and in this respe
t, the following s
heduling poli
ies have been
onsidered:
• First-Come-First-Served (FCFS): in
oming jobs are appended to the s
hedulingqueue a

ording to the lo
al arrival time (i.e. re
eption of an ASSIGN message);
• Shortest-Job-First (SJF): the s
heduling order depends on the jobs' ERT, withshorter jobs being exe
uted �rst;
• Earliest-Deadline-First (EDF): used only for deadline s
heduling, this poli
yprioritizes jobs with an earlier deadline (as spe
i�ed in their pro�le);
• Fair Advan
e Reservation (FAR): used in advan
e reservation s
enarios, thispoli
y enables the allo
ation of time-slots for exe
uting a task. If 
ollisions betweenallo
ations happen, the earliest submitted job is given priority;
• Fair Pool Advan
e Reservation (FPAR): similar to FAR, this s
heduling poli
ysupports dependen
y between tasks within the same pool. When a job is ready forexe
ution, the assignee informs the initiator by means of a STATUS message withvalue READY: jobs 
an be started only when all tasks in the pool are ready forexe
ution (i.e. when the assignees re
eive a STATUS with value RUNNABLE).For bat
h s
heduling s
enarios FCFS and SJF are used: these s
hedulers are interoper-able be
ause these s
hedulers share the same 
ost fun
tion (as de�ned in Se
tion 5.2.3). Inour evaluations, we use the term Mixed to refer to s
enarios where ea
h node is randomlyassigned a s
heduling poli
y between FCFS and SJB. Unless otherwise spe
i�ed, in ourbat
h s
heduling experiments the Mixed poli
y is employed. In deadline s
enarios the EDFs
heduling poli
y is employed; 
onversely, in advan
e reservation s
enarios FAR and FPARare used.
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enario detailsIn the following we detail the goals of ea
h evaluation s
enario and the main parameter val-ues used to assess the behavior of the proto
ol a

ording to these goals. The 
orrespondingresults are presented in Se
tion 5.4.A - Bene�ts of dynami
 res
heduling with bat
h s
hedulers To quantify thebene�ts that 
an be a
hieved with dynami
 res
heduling, s
enarios A experiment withdi�erent lo
al bat
h s
heduling poli
ies (FCFS, SJF, Mixed) and measure the averagewaiting and exe
ution times, as well as the number of 
ompleted jobs during the simulation.B - Robustness and load balan
ing 
apabilities The robustness of the meta-s
hedulingproto
ol is assessed by means of low and high load situations in s
enarios B. More spe
i�-
ally, in low load situations the job submission rate is halved to one job every 20 se
onds,with jobs submitted from 20 minutes to 5 hours 54 minutes into the simulation. Respe
-tively, for high load situations the submission rate is doubled, with one submission every
5 se
onds, starting from 20 minutes up to 1 hours 45 minutes into the simulation.C - S
alability S
enarios C gauge the s
alability by means of a dynami
ally expandingnetwork. Starting from the original network of 500 nodes, new nodes are added every 50se
onds starting from 1 hours 23 minutes, in
reasing its size to 700 nodes at approximately
4 hours 10 minutes into the simulation. These new nodes represent newly available gridresour
es that 
an take part in the s
heduling and res
heduling pro
ess. The evaluation ofthese s
enarios aims at determining the load-balan
ing e�e
t amongst available resour
esa
hievable by means of dynami
 job res
heduling.D - Bene�ts of res
heduling with deadline s
hedulers Con
erning deadline s
e-narios, the fo
us of the evaluation is on the proto
ol's ability to mat
h jobs' deadlines.Two poli
ies are 
onsidered: with the �rst, deadlines are set 15 hours after the estimated
ompletion time on average; with the se
ond, the available time to 
omplete the job isredu
ed to 2 hours 30 minutes after the estimated 
ompletion time on average. All jobs inthese s
enarios employ the EDF s
heduler.E - Bene�ts of res
heduling with advan
e reservation The bene�ts of dynami
res
heduling in advan
e reservation s
enarios is assessed by measuring the number of de-layed jobs and the average delay. In this regard, both simple (one task) reservations, aswell as advan
e pool reservations are 
onsidered. The 
onsidered lo
al s
hedulers are FARand FPAR, for simple reservations and pool reservations respe
tively.F - Sensitivity To better understand the behavior of aria under di�erent 
ir
umstan
esand to assess how main variables in�uen
e the out
ome of the s
heduling pro
ess, a sen-sitivity analysis is 
ondu
ted. More spe
i�
ally, the following parameters and evaluation
onditions are 
onsidered:
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• F1 - Sensitivity to ERT pre
ision: the s
heduling and res
heduling de
isionsdepend on the estimated running time of ea
h job. To determine the in�uen
e of thea

ura
y of su
h an estimation we evaluate the behavior of the proto
ol by varyingthe error introdu
ed in the simulation. Two sets of experiments with a Mixed bat
hs
heduling poli
y are 
onsidered. In a �rst set of experiments, the relative error of theA
tual Running Time is in
reased from ±10% to ±25% (ε = 0.25). Subsequently,we employ an optimisti
 estimation where the ERT is always lower than the a
tualtime, with ε = 0.1, and driftj,ε is repla
ed with |driftj,ε|). Finally, we 
ondu
texperiments where the estimation mat
hes the ART (ε = 0).
• F2 - Sensitivity to jobs 
andidate for res
heduling: the number of jobs thatea
h node tries to res
hedule at on
e determines the amount of INFORM messagesbroad
asted on the network. The goal of this evaluation is to assess the bene�ts of
onsidering res
heduling for a di�erent number of jobs. In parti
ular, we 
hange thedefault value of 2 
andidate jobs in the queue, to 1 and 4 respe
tively.
• F3 - Sensitivity to job submission node: in all other s
enarios jobs are submittedto a random node in the grid, to simulate geographi
ally dispersed users a

essingtheir lo
al grid nodes. To determine if the node that a
ts as job broker in�uen
esthe out
ome of the s
heduling pro
ess we simulate a grid where only a single nodeis responsible for job submission, and 
ompare the results regarding the average
ompletion time and the tra�
 with ones obtained for our baseline strategy.
• F4 - Sensitivity to job pro�les distribution: to assess the in�uen
e of the jobpro�les distribution on the s
heduling performan
e we experiment with a uniformdistribution instead of the one mat
hing the a
tual distribution of resour
es.5.4 ResultsHaving detailed the parameters of the 
onsidered evaluation s
enarios, we present anddis
uss here the 
orresponding results. First, a dis
ussion on the bene�ts of the dynami
res
heduling me
hanism of the aria proto
ol, its s
alability, and its e�e
tiveness to ad-dress the load-balan
ing problem is presented. This is followed by an analysis of deadlineand advan
e reservation s
heduling s
enarios. Finally, the results of the sensitivity anal-ysis pertaining to di�erent aspe
ts of our meta-s
heduling approa
h are dis
ussed. Thepresented job 
ompletion times refer to an average over all 1000 submitted jobs.5.4.1 A - Bene�ts of dynami
 res
heduling with bat
h s
hedulersFigure 5.3 (a) shows the total exe
ution time a
hieved on bat
h s
hedulers. The SJFand Mixed s
enarios demonstrate the bene�ts of dynami
 res
heduling, although it isnoteworthy to highlight the 
omparative optimality of the FCFS poli
y without dynami
res
heduling. This result is attributed to the fa
t that FCFS preserves the optimality ofthe initial delegation by not modifying the s
heduling order upon new submissions. Onthe 
ontrary, with SJF submission of a job with shorter ERT than already s
heduled jobsmodi�es the expe
ted 
ompletion time for all jobs with longer ERT. Another interesting



5.4. Results 121fa
t 
on
erns the 
omposition of the total job 
ompletion time of SJF and Mixed; morespe
i�
ally, while dynami
 s
enarios exhibit larger exe
ution times, there is a redu
tion inthe 
ompletion time, whi
h proves the e�e
tiveness of the res
heduling phase in providingshorter waiting times and its ability to distribute jobs to nodes based on a
tual waitingqueues length rather than just on 
omputational power. Similar observations about thebene�ts of dynami
 res
heduling with SJF and Mixed poli
ies 
an be made with regardsto the evolution of 
ompleted jobs, shown in Figure 5.3 (b).

(a) Total time (b) Completed jobs

(
) Idle nodes (d) Tra�
Figure 5.3: A - Bene�ts of dynami
 res
heduling with bat
h s
hedulersAs illustrated in Figure 5.3 (
), dynami
 res
heduling helps a
hieving better resour
eutilization when using either the SJF or Mixed s
heduling poli
ies. In parti
ular, thenumber of idle nodes de
reases by about 100, indi
ating an improved balan
ing of theoverall grid load.The resulting network overhead is shown in Figure 5.3 (d): for all 
onsidered s
hedulingpoli
ies the res
heduling operations double the tra�
, from an average of 7000 MBytes to
14000 MBytes. The largest part of the tra�
 is attributed to REQUEST and INFORMmessages, whereas other messages a

ount for only a negligible part of the overall tra�
.Although the tra�
 in
rease is important, it is 
ompensated by the a
hievable bene�ts ofredu
ed exe
ution times.
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heduling5.4.2 B - Robustness and load balan
ing 
apabilitiesThe robustness of our meta-s
heduling proto
ol in respe
t to the total exe
ution timeversus the frequen
y of job submissions is demonstrated in Figure 5.4 (a). Even when thesubmission rate is doubled from 1 job every 10 se
onds (as in other experiments) to 1 jobevery 5 se
onds, the bene�ts of dynami
 res
heduling are noti
eable, with a redu
tion ofthe average 
ompletion time from 3h 21m to 2h 27m. Conversely, with a slower submissionrate of 1 job every 20 se
onds, dynami
 res
heduling lowers the average 
ompletion timefrom 2h 06m to 1h 43m.

(a) Total time (b) Idle nodes

(
) Tra�
Figure 5.4: B - Robustness and load balan
ing 
apabilitiesFigure 5.4 (b) depi
ts the resour
e utilization in all experiments. As noted in s
enariosA, dynami
 res
heduling enhan
es the load balan
ing a
ross grid nodes by making use ofabout 100 nodes more. Finally, Figure 5.4 (
) shows the overall bandwidth 
onsumptionne
essary to exe
ute the 1000 jobs submitted to the grid. It is interesting to note that alower submission rate results in noti
eably less res
heduling tra�
 (INFORM messages).The reason behind this is the ability of starting job exe
ution earlier be
ause queues are lessloaded as more time passes between ea
h submission; hen
e, the number of jobs 
andidatefor res
heduling is lowered.
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alabilityIn Figure 5.5 (a) we assess the s
alability of aria pertaining to the redu
tion of the totalexe
ution time in an expanding grid. As expe
ted, dynami
 res
heduling enables betterusage of newly available resour
es, and redu
es the total exe
ution time from 2h 41m to 2h
5m. As it emerged in s
enarios A, the redu
tion of the waiting time a

ounts for a shortertotal 
ompletion time, although the exe
ution time in
reases. This result is supported bythe analysis of the evolution of the number of 
ompleted jobs shown in Figure 5.5 (b).

(a) Total time (b) Completed jobs

(
) Idle nodes (d) Tra�
Figure 5.5: C - S
alabilityThe load balan
ing e�e
t is demonstrated in Figure 5.5 (
): as the size of the networkin
reases, res
heduling leads to the utilization of up to 100 additional nodes. The networktra�
 results shown in Figure 5.5 (d) reveal an interesting behavior of the meta-s
hedulingproto
ol: as the network size is in
reased, the overall tra�
 generated by INFORM mes-sages is redu
ed. The reason for this is the in
reased availability of nodes that 
an startjob exe
ution sooner, thus redu
ing the number of res
heduling opportunities.5.4.4 D - Bene�ts of res
heduling with deadline s
hedulersPertaining to deadline s
heduling, important performan
e metri
s are the number of dead-lines, the lateness (i.e the time left from 
ompletion to the deadline), and the missed time(i.e. the time, if any, past the deadline). As shown in Figure 5.6 (a), dynami
 res
heduling
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hedulingsigni�
antly redu
es the o

urren
e of missed deadlines. In parti
ular, their number isde
reased from 189 to 1 when the deadline is set 15 hours after the estimated 
ompletiontime, and from 273 to 55 when the deadline is set 2.5 hours after the estimated 
ompletiontime. With deadlines set at ERT + 15h, the average total lateness is also in
reased from
5h 33m to 6h 45m, meaning that more time is left between 
ompletion times and deadlines;with deadlines at ERT + 2.5h a slight de
rease 
an be observed, from 1h 44m to 1h 36h,but the total lateness for su

essful jobs in
reases as more deadlines are ful�lled. In allexperiments, the average missed time is de
reased substantially when dynami
 res
hedul-ing is employed, going from 1h 53m to 3m with ERT + 15h, and from 1h 25m to 33mwith ERT + 2.5h. Finally, Figure 5.6 (b) shows a signi�
ant in
rease in the number ofINFORM messages as tighter deadlines are enfor
ed.

(a) Deadlines (b) Tra�
Figure 5.6: D - Bene�ts of res
heduling with deadline s
hedulers5.4.5 E - Bene�ts of res
heduling with advan
e reservationIn advan
e reservation s
heduling the system must ensure that allo
ated time slots areenfor
ed, and that jobs 
an start exe
uting on time. However, when multiple reservationsare made, 
ollisions may happen and some reservations might need to be delayed. Be
auseour proto
ol strives to provide a best e�ort meta-s
heduling servi
e, an important metri
to assess its bene�ts is the average delay time a
ross all reservation slots. In 
ontrast todeadline s
heduling, the exe
ution of a job 
annot be arbitrarily started, but has to waituntil the reservation start time; additionally, with task pools, ea
h task has to wait untilall dependent tasks are ready. Ea
h one of the 1000 submitted jobs is 
omposed of 1 to 4dependent tasks; in ea
h simulation run a total of 2495 tasks on average was s
heduled onthe grid. Be
ause ea
h task is s
heduled independently, dynami
 res
heduling is performedon a per-task basis rather than per-job.As shown in Figure 5.7 (a) the average delay is signi�
antly redu
ed when dynami
res
heduling is employed, from 38m to 5m per job in single task reservations, and from 6h
45m to 2h 40m per task in task pool reservations. Moreover, 
on
erning the s
heduling oftask pools, a substantial de
rease in the number of revoked jobs, that are redu
ed from 295down to 20, 
an be observed. Con
erning network overhead, Figure 5.7 (b) highlights thesigni�
ant in
rease in the bandwidth 
onsumed by INFORM messages, whi
h bespeaks
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(a) Delays (b) Tra�
Figure 5.7: E - Bene�ts of res
heduling with advan
e reservationfor a more unstable behavior of the proto
ol in the 
onsidered 
onditions.5.4.6 F - SensitivityResults of the sensitivity analysis will lead to a better understanding of the meta-s
hedulingproto
ol and lay more solid foundations for further resear
h.F1 - Sensitivity to ERT pre
ision An important assumption of the proto
ol is theavailability of an a

urate job running time estimation. Be
ause of estimation errors, thea
tual running time might be higher or lower than the ERT. The results shown in Figure5.8 (a) provide an insight on the performan
e of the dynami
 res
heduling me
hanismimplemented by aria. The balan
ed nature of the introdu
ed error a

ounts for thehomogeneity of the average 
ompletion time a
ross all experiments. The stability of theproto
ol is 
on�rmed by the overall tra�
 generated during the experiments (Figure 5.8(b)), whi
h remains stable and 
onsistent a
ross all simulations.

(a) Total time (b) Tra�
Figure 5.8: F1 - Sensitivity to ERT pre
ision
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hedulingF2 - Sensitivity to jobs 
andidate for res
heduling The behavior of the dynami
res
heduling phase is determined by the number of jobs that 
ould potentially be reas-signed. In this regard, we are interested in evaluating the impa
t of di�erent res
hedulingstrategies with two relevant s
heduling poli
ies, namely bat
h and advan
e reservations
heduling. More pre
isely, we 
onsider the in�uen
e of a di�erent number of jobs 
andi-date for res
heduling on the average job 
ompletion time and on the number of delays, forbat
h and advan
e reservation s
hedulers respe
tively.The results depi
ted in Figure 5.9 show no noteworthy variation in the total 
omple-tion time when bat
h s
hedulers are 
on
erned, and negligible di�eren
es with single taskadvan
e reservation s
heduling. On the 
ontrary, with task pool reservations res
hedulingof 1 and 4 tasks a
hieves a lower average job start delay than the default poli
y of 2 tasks.In this 
ontext, res
heduling 1 task seems to provide the best performan
e, although thenumber of revoked jobs is slightly in
reased.

(a) Total time (b) Tra�


(
) Delays (d) Tra�
Figure 5.9: F2 - Sensitivity to jobs 
andidate for res
hedulingCon
erning the network overhead, the bandwidth 
onsumption to be a

ounted toINFORM messages signi�
antly in
reases as more jobs are 
onsidered for the res
hedulingphase. From this point of view, sele
tion of 1 
andidate emerges as the best option in alls
heduling poli
ies.
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ura
y of the results 127F3 - Sensitivity to job submission node In all previous s
enarios jobs are submittedto a random node in the grid, thus favoring an even distribution of the requests a
rossall available resour
es. In order to assess the in�uen
e of this 
hoi
e on the performan
eof the meta-s
heduling proto
ol, experiments where all 1000 jobs are submitted to onlyone single broker were 
ondu
ted. Con
erning the average total 
ompletion time, Figure5.10 (a), highlights no signi�
ant di�eren
e between the two submission strategies whenres
heduling is enabled, and only a small in
rease is noti
eable when no res
heduling isallowed. On the 
ontrary, an analysis of the tra�
, illustrated in Figure 5.10 (b), showsequivalent results.

(a) Total time (b) Tra�
Figure 5.10: F3 - Sensitivity to job submission nodeF4 - Sensitivity to job pro�les distribution The last set of experiments fo
useson the distribution of job pro�les. Instead of generating job requests a

ording to thesimulated distribution of resour
es, experiments with uniformly distributed requests havebeen performed. The results 
on
erning the average total 
ompletion time are illustratedin Figure 5.11. It is evident that a uniform distribution worsens the performan
e of themeta-s
heduling pro
ess, and almost denies all bene�ts of the dynami
 res
heduling phase.This degradation of the performan
e 
an be attributed to the large number of jobs thatrequire very rare resour
es: in this 
ase, the queues on nodes sharing su
h resour
es qui
klybe
omes overloaded, leading to substantial in
rease in waiting times.5.5 A

ura
y of the resultsResults detailed in this 
hapter represent an average over 5 simulation runs for ea
h s
e-nario. Time for 
ompletion graphs are 
omputed on an average on 1000 jobs in ea
h run.The obtained performan
e data has proven to be very stable, with minimal variationsa
ross all runs and s
enarios. Con
erning the average total time for 
ompleting a job, therelative standard deviation is 2.6%; 
onversely, for the average waiting time it is 5.98%,and for the average exe
ution time 1.48%. Pertaining to deadline s
heduling, the mostrelevant relative variations of missed deadlines were found in s
enario D with dynami
res
heduling enabled, with a deviation of 97% on an average of 1 job with ERT + 15h,
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(a) Total time (b) Tra�
Figure 5.11: F4 - Sensitivity to job pro�les distributionand of 43% on an average of 55 jobs with ERT + 2.5h; without dynami
 res
heduling theobtained variations were in the range of 13.10%, on an average of 189 jobs with ERT +15h, and 5.8% on an average of 273 jobs with ERT + 2.5h.5.6 SummaryIn this 
hapter, we fo
used on the problem of e�
iently allo
ate tasks a
ross geographi-
ally distributed resour
es. We presented a fully distributed grid meta-s
heduling proto
olnamed aria that aims at improving the e�
ien
y of heterogeneous grids, as well as ad-dressing the related s
alability and adaptability 
on
erns. From this point of view, ourwork re�e
ts the vision of next-generation grids that strive to evolve into reliable, �exi-ble, autonomi
, and self-manageable systems that require minimal user intervention andredu
ed deployment 
osts.The proposed meta-s
heduling proto
ol, named aria, is based on simple messagesex
hanged between grid nodes over a peer-to-peer overlay, and does not depend on thea
tual implemented lo
al s
heduling poli
ies. This enables better integration with existinggrid middlewares and fa
ilitates its adoption. The 
entral point of our work is the supportfor dynami
 res
heduling of jobs, whi
h enables optimal job reallo
ation under dynami

onditions, for example by making use of newly available resour
es and by taking intoa

ount 
hanges in resour
e utilization.Throughout extensive experimental evaluation, we validated the behavior of the proto-
ol and assessed signi�
ant results 
on
erning the e�e
tiveness of our approa
h. In parti
-ular, we a
hieved shorter average exe
ution times with bat
h s
hedulers, a redu
ed numberof missed deadlines, and de
reased delays in advan
e reservation s
heduling. The proto-
ol also demonstrated its ability to enhan
e load-balan
ing amongst the nodes. Finally atra�
 analysis pinpointed an a

eptable bandwidth 
onsumption when 
ompared to thea
quired bene�ts, thus suggesting the viability of our approa
h in real-world deployments.
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ations run-ning over a set of non-dedi
ated resour
es. From this point of view, SmartGRID followsthe idea of implementing a desktop grid that brings together the power of a large numberof personal systems voluntarily shared by their users to provide on-demand a

ess to 
om-puting resour
es. In 
ontrast to traditional grid infrastru
tures, the SmartGRID visionis geared toward peer-to-peer intera
tion between systems, and promotes self-organizationand adaptiveness.To abstra
t from the volatile and unreliable nature of the 
onsidered underlying re-sour
es, a multi-layered ar
hite
ture has been 
onsidered. More spe
i�
ally two main 
on-
erns have been identi�ed, namely that of resour
e monitoring and of high-level task man-agement. A

ordingly the middleware is 
omposed of two loosely 
oupled fun
tional layers,the Smart Signaling Layer (SSL) and the Smart Resour
e Management Layer (SRML),whi
h are 
onne
ted by means of a Datawarehouse Interfa
e (DWI). This design promotesa 
lear separation between low-level 
ommuni
ation amongst peers and high-level taskallo
ation a
tivities.SmartGRID also di�ers from 
ommon grid middleware platforms, su
h as Globus[117℄, in that it operates in a fully distributed and self-organized way, hen
e loweringthe need for supervised operation and redu
ing deployment e�ort. Moreover, for low-level a
tivities, su
h as resour
e dis
overy and 
ommuni
ation, bio-inspired solutions areemployed in order to a
hieve the required 
hara
teristi
s of adaptiveness, robustness andself-organization.The work presented in this thesis mainly fo
uses on the SSL; in parti
ular, the overlaymanagement algorithm and the resour
e dis
overy me
hanisms are employed to providebasi
 servi
es to the grid and enable sharing of resour
es among nodes. In addition,the meta-s
heduling proto
ol 
on
erns the SRML. In the following we thus group all the



130 Chapter 6. SmartGRID
omponents presented in previous 
hapters and des
ribe how they are integrated within theSmartGRID framework. In se
tion 6.1 the details of the multi-layered ar
hite
ture arepresented, while in se
tion 6.2 the platform used for the SSL is introdu
ed and a dis
ussionabout its strengths is presented.6.1 SmartGRIDSmartGRID is a distributed grid middleware that aims at providing stable, robust, ande�
ient resour
e management over a heterogeneous and volatile pool of geographi
allysparse resour
es. The ar
hite
ture is 
omposed of three layers (Figure 6.1): the SmartResour
e Management Layer (SRML), the Smart Signaling Layer (SSL), and a dataware-house interfa
e for loosely 
oupled intera
tion. The SRML is in 
harge of managing userrequests and job s
heduling by exploiting information gathered from the SSL, whi
h pro-vides resour
e dis
overy and low-level 
ommuni
ation between nodes.In the 
onsidered s
enario, ea
h SmartGRID node runs an instan
e of both the SRMLand the SSL. Con
erning the software aspe
t, the SRML is implemented byMaGate nodes[149, 148℄, whereas the SSL is based on Solenopsis nodes [52℄. The design of the node ismodular, to allow for easy repla
ement of single 
omponents and reuse of existing modulesfor di�erent purposes.

Figure 6.1: SmartGRID node ar
hite
tureSmart Signaling Layer The Smart Signaling Layer (SSL) manages low-level 
ommuni-
ation between grid nodes as well as providing resour
e dis
overy. In this 
ontext, severalof the 
omponents presented in this thesis have been integrated in the SSL, as shownin Figure 6.1. In parti
ular to manage the overlay 
onne
ting SmartGRID nodes, theBlåtAnt algorithm is employed. To support this fun
tionality from a pra
ti
al point ofview, a 
ustom runtime platform tailored for the deployment of bio-inspired ant algorithms
alled Solenopsis (presented in detail in the forth
oming se
tion) has been developed.Finally, to support e�
ient resour
e dis
overy the approa
h presented in Chapter 4 hasbeen employed.
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e Management Layer The Smart Resour
e Management Layer (SRML)is in 
harge of supervising the usage of resour
es and mediating intera
tion between theuser and the system by providing an interfa
e for task submission and tra
king. The SRMLexploits information from the SSL to e�
iently s
hedule tasks either on lo
al resour
es oron remote nodes. A

ordingly, the SRML interoperates with the existing s
heduling in-frastru
ture and obeys to lo
al and remote resour
e usage poli
ies. At the SRML level,ea
h node is managed by a software appli
ation 
alled MaGate [148℄. As shown in Figure6.1, the MaGate itself is 
omprised of di�erent 
omponents that enable intera
tion withlo
al resour
es, remote MaGate, external servi
es as well as users and appli
ations. Inthe following, a brief review of ea
h 
omponent is provided.
− Kernel Component: represents the 
ore of the MaGate, and provides the logi
to analyze job des
riptions, monitor system load, take s
heduling de
isions, and
oordinate the operation of the other 
omponents.
− Lo
al Resour
e Management (LRM) Component: 
onne
ts to low-level re-sour
e management systems and middlewares su
h as Globus [117℄ or Uni
ore[21℄.
− External Component: o�ers a plug-in me
hanism that enables the integrationof additional servi
es, su
h as resour
e dis
overy or hardware monitoring. In the
ontext of SmartGRID, the Datawarehouse is interfa
ed by means of an external
omponent.
− Interfa
e Component: deals with job submissions from di�erent sour
es, su
h asgrid users and appli
ations.
− Community Component: manages 
onne
tions between MaGates, in order tosupport external job s
heduling requests and job transfer requests.Datawarehouse The SSL and SRML 
ommuni
ate through a datawarehouse, whi
hprovides both an asyn
hronous 
ommuni
ation 
hannel and a temporary storage. In the
ontext of the SmartGRID middleware, the datawarehouse also helps maintaining 
learseparation of 
on
erns between the two fun
tional layers.Although the main 
ontribution of this thesis fall within the Smart Signaling Layer,resear
h spans over all layers. In parti
ular, the overlay management algorithm introdu
edin Chapter 3 and the resour
e dis
overy proto
ol in Chapter 4 
on
ern the SSL, while themeta-s
heduling framework presented in Chapter 5 
on
erns the SRML.6.2 SolenopsisSolenopsis 1 [52℄ is a framework for the deployment of fully distributed ant algorithms
omposed of a programming language and an exe
ution environment. The framework1Solenopsis Invi
ta, also known as Red imported �re ant, is a parti
ularly aggressive spe
ies of antoriginally from South Ameri
a.
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i�
ally for the SmartGRID proje
t, in order to ful�ll the need for asoftware platform to base the Smart Signaling Layer on.6.2.1 Related WorkSeveral platforms exist aimed at supporting the development of ant algorithms; noteworthyexamples are the Swarm Simulation System [209℄, MASS [146℄ and Anthill [27℄. Inthis se
tion we brie�y review these systems and highlight their 
hara
teristi
s:Swarm Simulation System The Swarm Simulation System [209℄ allows to modelmulti-agent dis
rete simulations at di�erent levels. The framework is obje
t-oriented, withagents being mapped as obje
ts. Agents 
an intera
t with ea
h other, and the wholesimulation 
an be syn
hronized. The platform itself o�ers di�erent tools for algorithmpro�ling and data analysis. Unfortunately, the platform is limited to simulations and doesnot provide any support for fully distributed agent deployment.Multi-agent System Simulation Framework The Multi-agent System Simula-tion Framework (MASS) [146℄ allows a

urate and 
ontrollable simulations of systems
omposed of 
ollaborative agents. Agents 
an sense the simulated environment and per-form a mixture of real and simulated a
tivities. The platform supports both dis
rete timeand event-based simulations, but is not targeted to fully distributed deployments.Anthill Anthill [27℄ is a Java framework that supports P2P appli
ation development.It provides runtime and simulation environments and it has been su

essfully used toimplement the Messor [210℄ load-balan
ing algorithm. The runtime environment is amiddleware built on JXTA [131℄ and allows for real-world deployment of appli
ations. Asimulation environment is also supported and enables lo
al testing and evaluation of antalgorithms. Unfortunately the development of Anthill was stopped in year 2002.Be
ause both Swarm and MASS fo
us on the development and evaluation of multi-agent
oordination in distributed systems with total a

ura
y, by means of a simulation environ-ment, their ar
hite
ture is not well suited for real-world distributed dynami
 environments.In 
ontrast, Anthill is not only aimed at supporting the design and analysis of P2P sys-tems, but at the implementation of su
h systems in real network environments as well. Tosu
h an extent the Anthill framework is the one mostly similar to Solenopsis, althoughit does not support transparent and strong migration of agents.6.2.2 Solenopsis Framework OverviewSolenopsis is 
omprised of several 
omponents that support both fully distributed exe-
ution (deployment mode), with an instan
e of the platform running on ea
h of the par-ti
ipating hosts, as well as lo
al exe
ution (or simulation) of several nodes (simulationmode). It is noteworthy to mention that for the development of ant algorithms, there is nodistin
tion between these two s
enarios: implemented algorithms 
an be exe
uted eitherin simulation or deployment mode, without modi�
ation; moreover, simulated nodes 
an
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ombined with deployed ones in a fully distributed environment to enable
omplex evaluation s
enarios.Deployment mode Figure 6.2 depi
ts the ar
hite
ture of a node in a fully distributedsetup. On start-up, a 
on�guration s
ript is pro
essed by the platform daemon. Thes
ript 
ontains the list of operations required to set up the node and initialize the requiredplug-ins, and is exe
uted in the platform's shell. As a result of this phase a node daemonis instantiated, along with all the plug-ins needed for implementing the extended fun
tion-alities of the node (for example, the BlåtAnt algorithm) as well as for exposing a

essto external resour
es (su
h as the Datawarehouse). To enable 
ommuni
ation betweennodes, the platform daemon provides a mail server (that implements a 
ustom proto-
ol based on TCP/IP 
ommuni
ation): the server allo
ates a uniquely identi�ed mailboxto the node daemon whi
h is used to send and re
eive ants from, respe
tively to, otherSolenopsis nodes. A
tual data transfer is managed by the mail servi
e. In
oming antsand lo
ally started ants are 
ompiled and then exe
uted in sandboxed virtual ma
hines,the exe
ution of whi
h is managed by a preemptive s
heduler. The s
heduler enables
on
urrent exe
ution of many virtual ma
hines without 
reating an ex
essive number ofthreads. When an ant requests to migrate to another node, the built-inmigration servi
eserializes the ant's state and transfers it to the target node, where exe
ution is resumed.

Figure 6.2: Solenopsis deployment mode with node detailSimulation mode In simulation mode (Figure 6.3) ea
h platform daemon manages mul-tiple node daemons. In 
ontrast to deployment mode, plug-in servi
es 
an be shared be-tween node daemons to redu
e memory footprint. Moreover, simulation spe
i�
 plug-ins
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s, su
h as network measurements, 
an be enabled.
Figure 6.3: Solenopsis simulation mode6.2.3 Ant programming languageAnts are developed in a Lisp-like language 
alled DLisp whi
h is 
ompiled to a byte-
oderepresentation and exe
uted by a sta
k-based virtual ma
hine on the node. The algorithmdes
ribing the behavior of the ant as well as its runtime state are en
apsulated in the antitself. It is thus possible to 
reate and exe
ute di�erent ant spe
ies in a distributed systemwithout repla
ing 
omponents or fun
tionality on ea
h node. Moreover, as the evaluationand the deployment environment are the same, there is no need to re-implement algorithmsfor large-s
ale deployment. As the ant behavior is exe
uted inside a virtual ma
hine, ant
ode is sandboxed and only servi
es made available by the node 
an be a

essed.The programming language supports di�erent basi
 data types su
h as numbers (inte-gers and �oating point), strings, lists, di
tionaries, simple 
losures (lambda), and nil (theonly type whose semanti
 value is the boolean False); fun
tions to manipulate these typesare available as built-in. Moreover, ma
ros 
an be developed to extend the language with
ustom 
onstru
ts.6.2.4 Support for transparent strong migrationOne of the strengths of Solenopsis is the possibility to transparently migrate ant-agentsa
ross nodes, as part of their exe
ution. This feature is parti
ularly important for bio-inspired ant-algorithms, be
ause mobility is an inherent 
apability of ea
h agent. Thedetails of transparent strong migration are shown in the example illustrated in Figure 6.4.Several steps are involved in the migration pro
ess:1. the ant exe
uting on a node 
alls the migrate fun
tion to migrate to another node;2. the 
all is managed by the migration servi
e running on the node;3. a snapshot of the a
tual running state of the ant is requested from the 
ontrol 
om-ponent of the node; the state in
ludes the 
urrent program 
ounter as well as the fullexe
ution sta
k;4. the ant state is passed to the mail servi
e to be sent to the target node;5. the mail servi
e serializes the re
eived data, and forwards it to the lo
al mail server;



6.3. Summary 1356. the serialized ant state is transmitted to the re
eiving node's mail server;7. the 
ontrol 
omponent of the target node is instru
ted to 
reate a new virtual ma
hineinstan
e, and restore the exe
ution state;8. the virtual ma
hine is 
reated, and s
heduled for exe
ution;9. exe
ution of the ant 
ode restarts, and the instru
tion following the 
all to migrateis pro
essed (the migrate fun
tion returns false if the migration does not su

eed).

Figure 6.4: Strong transparent migration example6.2.5 ExtensibilityTo integrate Solenopsis within the SmartGRID middleware a modular design approa
hwas employed. Additional servi
es, written in Java, 
an be used to extend the fun
tion-ality of node servi
es and enable a

ess to external 
omponents and resour
es from theant 
ode. In the 
ontext of SmartGRID, the modules that are implemented as exten-sions to Solenopsis in
lude the BlåtAnt algorithm, the resour
e dis
overy servi
e, anda

ess to the Datawarehouse to enable 
ommuni
ation with the SRML. It is noteworthyto mention that the generi
 and modular design of Solenopsis enabled the integrationof its 
ore 
omponents (namely, the 
ompiler, virtual ma
hine, and basi
 servi
es) intoanother proje
t, 
alled FlexibleRules [121℄, aimed at supporting the development ofdigital board games.6.3 SummaryIn this 
hapter we presented the SmartGRID, a novel grid middleware that aims atbridging the gap between appli
ations and heterogeneous and volatile resour
es, by pro-moting a fully distributed design and self-organized operation. SmartGRID integrates
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on
epts and the solutions proposed in this thesis, namely the BlåtAnt overlay man-agement algorithm, detailed in Chapter 3, the proa
tive 
a
hing me
hanism to improveresour
e dis
overy dis
ussed in Chapter 4, and the aria proto
ol for fully distributedmeta-s
heduling, presented in Chapter 5. The framework is based on a multi-level design
omposed of two layers: the Smart Signaling Layer (SSL) and the Smart Resour
e Manage-ment Layer (SRML). The �rst is in 
harge of managing low-level aspe
ts of the middleware,su
h as 
ommuni
ation between grid nodes and resour
e dis
overy, whereas the latter dealswith high-level 
on
erns su
h as job s
heduling and resour
e management. The SSL is im-plemented by a runtime platform 
alled Solenopsis that supports the development anddeployment of ant-based distributed algorithms, whereas the SRML is 
omposed of Ma-Gate 
omponents that provide an interfa
e to grid appli
ations, s
hedulers, and existinggrid middlewares.
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ommonly viewed as important aspe
ts to sup-port reliable, e�
ient, and s
alable distributed solutions. In this respe
t, the developmentof novel self-organized and adaptive solutions for distributed systems was the impulse thatmotivated the resear
h 
arried out in this thesis. To this extent several essential aspe
tsof autonomi
 management and exploitation of distributed systems have been studied, inparti
ular the 
onstru
tion of an optimized peer-to-peer overlay with bounded diameterand girth, the implementation of a resour
e dis
overy me
hanism based on lo
al short
ut
a
hes to in
rease the e�
ien
y of �ooding based proto
ols, and the de�nition of a fullydistributed meta-s
heduling proto
ol that improves task allo
ation a
ross large pools ofresour
es. Ea
h of these aspe
ts has been thoroughly resear
hed, and a 
omprehensiveliterature review of existing solutions has not only motivated but also driven our resear
hand developments. Moreover, a 
lear separation of 
on
erns enables the in
orporation ofthe solutions implemented in this thesis into a variety of situations where fully distributedand autonomi
 operation is required, although the target of the evaluation has been thegrid s
enario de�ned by the SmartGRID proje
t.The solutions that have been proposed �t extremely well into the emerging self-organi-zation realm. In this 
hapter we summarize the main 
ontributions for ea
h of the topi
s
onsidered in this thesis, and highlight their distin
tive 
hara
teristi
s as well as futureresear
h dire
tions.7.1 Overlay managementThe proposed overlay management algorithm, 
alled BlåtAnt, answers the problem ofmaintaining an optimized overlay that enables 
ommuni
ation between peers with a re-du
ed number of retransmissions. By means of bio-inspired, fully distributed te
hniques



138 Chapter 7. Con
lusionsthe overlay is managed in a self-organized and adaptive way, and is s
alable as well asrobust to both node and 
ommuni
ation failures. The behavior of BlåtAnt has beenempiri
ally studied under di�erent network 
onditions, and results of simulations haveshown to be promising in respe
t to the possibility of employing bio-inspired optimiza-tion in 
ommuni
ation networks. More spe
i�
ally, the two proposed implementationsof the algorithm, namely BlåtAnt-R and BlåtAnt-S, enable e�e
tive management ofpeer-to-peer overlays and provide satisfa
tory performan
e under 
hurn and in the eventof unexpe
ted 
ommuni
ation failures. The produ
ed overhead on network resour
es aswell as the the s
alability of the system have been deemed reasonable in respe
t to otherexisting solutions (su
h as Gnutella or News
ast). Hen
e, in response to the resear
hproblem set in Chapter 1, �Can we exploit self-organization and bio-inspired solutions toprovide an optimized peer-to-peer 
ommuni
ation and servi
e provisioning framework?�, we
an assert that our 
ontribution provides a su�
ient and a�rmative answer.7.1.1 Future resear
h dire
tionsAlthough the 
onsidered evaluation s
enarios have proven the viability of BlåtAnt, moreextensive experimentation is undoubtedly required to understand the impli
ations of dif-ferent network 
onditions on the robustness and reliability of the algorithm. Moreover,full s
ale tests in a real network would help determine the limits of our approa
h, better
omprehend the in�uen
e of the 
onsidered parameters, and drive further improvementson the underlying logi
. In this sense, an interesting resear
h dire
tion will 
onsider the op-timization of the overlay a

ording to the underlying network topology, in order to redu
etransmission delays and low-level tra�
.The 
ollaborative pro
ess of dete
ting long paths and small 
y
les 
arried out by nodes
ould be improved by letting nodes ex
hange more information. In parti
ular, if a nodedete
ts a 
y
le for whi
h it is not responsible (hen
e it 
annot break), a noti�
ation tothe master of that 
y
le 
ould be sent. Conversely, neighbor nodes 
ould be queried inorder to determine distan
es on the graph with more pre
ision. Moreover, to dete
t somepartitioning situations, nodes 
ould analyze the information brought by Dis
overy Ants andmeasure its entropy. In a similar way, the optimization pro
ess 
ould be made adaptive inrespe
t to the per
eived dynami
ity of the network.Se
urity should also be studied in a more 
omprehensive manner; in parti
ular ananalysis of the robustness of the system in presen
e of misbehaving peers, and againsttargeted atta
ks has been negle
ted in this thesis, as its s
ope and time plan did not allowus to delve into this �eld. Future work should de�nitely 
onsider su
h 
on
erns in orderto produ
e a solid distributed platform.Furthermore a detailed 
omparison with other existing approa
hes (besides the ones
onsidered in this thesis) would help us understand the bene�ts and weaknesses of ourapproa
h. In this regard, the la
k of a 
ommon evaluation platform where di�erent peer-to-peer algorithms 
ould be evaluated under the same premises is 
onsidered as the mostimportant issue that would need to be solved in the future.
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e dis
overy 1397.2 Resour
e dis
overyThe se
ond question set in Chapter 1 
on
erns the problem of lo
ating information ina distributed system, and asks �Can we improve existing resour
e dis
overy me
hanismusing fully distributed bio-inspired solutions?�. The approa
h that we proposed in thisthesis implements a lo
al routing 
a
he on ea
h node that stores referen
es to other nodesin the overlay that share similar resour
es. In order to redu
e the overhead derived fromupdates to the 
a
he, whi
h are a
hieved by means of proa
tive queries broad
asted on thenetwork, an epidemi
 algorithm was employed to merge the 
ontents of lo
al 
a
hes betweennodes. In this regard, a bio-inspired solution like epidemi
 
a
he merges enabled us tomanage lo
al 
a
hes with minimal network overhead, without sa
ri�
ing the quality of the
ontained information. By means of extensive experimentation in di�erent s
enarios, thebene�ts of su
h semanti
-aware te
hniques were evident, even when 
ombined with anotherme
hanism aimed at improving �ooding-based resour
e dis
overy, namely repli
ation. Asdetermined by evaluation on di�erent types of overlay, the improvements brought by theproposed approa
h are independent from the peer-to-peer topology, hen
e our solution 
anbe implemented in a variety of s
enarios.7.2.1 Future resear
h dire
tionsIt would be of merit to 
ompare our solution with other �ooding improvement te
hniques,and on di�erent peer-to-peer overlays (either unstru
tured or stru
tured). Di�erent for-warding te
hniques should also be 
onsidered: in this 
ontext we �nd non-forwardingapproa
hes presented in [303, 188℄ interesting. In the same sense, the forwarding strategyemployed in the 
a
he 
ould be improved, for example by favoring routing towards nodeswith higher similarity: this solution would nonetheless require similarity values to be storedin the 
a
he itself.Several improvements of the proa
tive 
a
hing s
heme are possible. In parti
ular, re�ne-ments to the similarity fun
tion 
ould be introdu
ed to support more 
omplex semanti
s,although the one used in our evaluation to determine mat
hing resour
es is appropriatefor grid s
enarios. Another aspe
t worth 
onsidering in future resear
h works 
on
erns theout
ome of the merging pro
ess: whereas the implemented solution �lters the entries toretain after a merge by sele
ting the most re
ent ones based on their age information, moreuseful information 
ould be retained by employing information about the similarity.7.3 Meta-s
hedulingE�
ient task-allo
ation 
on
erns the last question that we asked in Chapter 1, and toanswer it a fully-distributed meta-s
heduling me
hanism 
alled aria was presented inChapter 5. Our solution implements a lightweight proto
ol that enables de
entralized
oordination of lo
al s
hedulers, without requiring ea
h node to dis
lose the details ofits own s
heduling poli
y, whi
h ensures �exibility and s
alability. Empiri
al evaluationvalidated the bene�ts of the proto
ol in di�erent 
onditions in terms of de
reased total jobexe
ution time and improved load-balan
ing.



140 Chapter 7. Con
lusions7.3.1 Future resear
h dire
tionsThe en
ouraging results obtained by our evaluation provide a solid base for future devel-opments, whi
h should primarily fo
us on some issues that were 
ons
iously set aside inthis thesis. In this regard, interesting future resear
h dire
tions in
lude evaluation withgrid s
hedulers in a real grid deployment. In this thesis we modeled several simple poli
iesfor bat
h and deadline s
heduling, nevertheless real s
hedulers deal with more unexpe
tedsituations, that in
lude job revo
ation, requirement 
hanges, queue holding, and hardwareor software failures. Also, the s
ope and time plan of this thesis did not allow us to diginto the problem of parallel job s
heduling on the same node, having 
hosen to employ asimpler model where only one job at a time exe
utes on a node. Therefore, a wider rangeof s
heduling and exe
ution poli
ies 
ould be introdu
ed.The logi
 to determine the nodes best suited to s
hedule tasks on 
ould be 
hanged toin
lude information other than the expe
ted 
ost. More spe
i�
ally, as proposed in [148℄,node trust and reputation 
ould be taken into a

ount.As for overlay management, reliability and se
urity within the proposed s
hedulingframework should be studied in a more 
omprehensive manner. Con
erning the �rst is-sue, our evaluation assumed that no failure 
ould terminate job exe
ution; in this sense,me
hanisms to enable job re
overy and resubmission in the event of a failure should beimplemented in the future. Conversely, regarding se
urity in our evaluation job allo
ationwas performed under the premise that trust relationships exist between ea
h parti
ipatingnodes, although this 
annot be assumed in a real distributed s
enario.7.4 SmartGRIDWe presented the SmartGRID middleware ar
hite
ture, that aims at providing a fully-distributed solution to operate a grid environment. SmartGRID builds on two fun
tionallayers, and the work presented in this thesis 
overs the signaling layer, whi
h is responsiblefor 
ommuni
ation between nodes and monitoring of the network. In this 
ontext, weproposed a software framework 
alled Solenopsis, whi
h enables the development andexe
ution of ant-based distributed algorithms, and helps bringing together all the afore-mentioned fun
tional 
omponents (overlay management, resour
e dis
overy, s
heduling)into the SmartGRID ar
hite
ture. By means of a simple, modular design, our solutionis also �exible and easily extensible, and 
ould be implemented in other s
enarios. Thepromoted programming language enables fast prototyping of ant mobile agents, and is sup-ported by a runtime environment that supports transparent strong migration a
ross theoverlay. This feature simpli�es the development of mobile 
ode, by removing the hassle ofrequiring expli
it exe
ution state serialization and de-serialization.7.4.1 Future resear
h dire
tionsIn the 
ontext of the SmartGRID proje
t, future work will fo
us on evaluating all as-pe
ts of the middleware, in parti
ular job submission and exe
ution, in a full-s
ale gridenvironment. Furthermore, further development of Solenopsis should improve supportfor 
ontrolled simulation 
onditions, for example by 
onsidering network laten
y, as well



7.5. Epilogue 141as by implementing additional measurement and statisti
al utilities.7.5 EpilogueSelf-organization 
an bring a de
isive improvement in the performan
e, reliability, and ro-bustness of distributed systems. In this 
ontext, bio-inspired unsupervised solutions 
anbe used to a
hieve self-organization and optimal operation of networked systems. Theproposed framework of algorithms shows that it is possible to exploit self-organized behav-iors to support or improve di�erent areas of distributed 
omputing, namely peer-to-peeroverlay management, resour
e dis
overy, and task allo
ation. The 
entral part of our work,whi
h 
onsists of the BlåtAnt algorithm, a
hieves fully distributed management and op-timization of a peer-to-peer overlay by means of a pro
ess that uses bio-inspired te
hniques.Beside that, epidemi
 algorithms have proven to be a simple yet e�
ient solution to shareinformation between nodes, and improve sear
h in unstru
tured overlays. Finally, self-organization 
an also be used to a
hieve optimal fully-distributed task allo
ation in grids,thus support bene�ts in terms of performan
e, s
alability and robustness. Undoubtedlywe do not 
laim that bio-inspired solutions address to a full extend the problems of self-organization and self-management of distributed systems. Nonetheless in the 
onsidereds
enarios they have proved to be suitable approa
hes providing satisfa
tory performan
e.This further strengthens our belief that self-organized and bio-inspired te
hniques are wor-thy 
ontenders in the �eld of distributed systems design.
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Figure A.1: F1 - Optimization parameter D - Sensitivity analysis



145BlåtAnt-R BlåtAnt-S

(a) Average path length

(b) Graph 
y
les

(
) Edge 
ount

(d) Tra�
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tor - Sensitivity analysis
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overy Ant hops π - Sensitivity analysis
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Figure A.5: F5 - Maximum per-node degree mo - Sensitivity analysis
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Figure A.6: F6 - Exploration versus Exploitation - Sensitivity analysis
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Figure A.7: F7 - Size of the α table - Sensitivity analysis
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