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Exploiting self-organization for the autonomic management of
distributed systems

Abstract: This thesis focuses on algorithms to support different aspects of distributed
systems management and their implementation using self-organized, adaptive, and bio-
inspired techniques. Three main topics are covered in the thesis: peer-to-peer overlay
management, efficient resource discovery, and decentralized task allocation. Concerning
peer-to-peer overlay management, a bio-inspired algorithm called BLATANT was devel-
oped. BLATANT is used to build and maintain an optimized peer-to-peer overlay through
the collaborative behavior of different species of mobile ant agents. Connections between
peers are modified to bound the diameter of the overlay and to remove redundant links
that may result in excessive communication traffic. The initial idea has evolved into two
fully distributed and fault resilient solutions: BLATANT-R and BLATANT-S. In order to
support efficient resource discovery, a decentralized search protocol that improves proba-
bilistic flooding by means of a proactive caching mechanism was introduced. The proposed
solution is based on epidemic information sharing, and provides important improvements
in the recall rate with minimal network overhead. Finally, to support decentralized task
allocation, and provide intelligent scheduling decisions across multiple grid nodes, a col-
laborative community scheduling algorithm named ARZA, which aims at serving the grid
as a whole has been implemented and evaluated. Based on the research performed in this
thesis, it is our opinion that self-organization can bring a decisive improvement in the
performance, reliability, and robustness of distributed systems.

Keywords: Distributed Systems, Peer-to-Peer Systems, Self-Organization, Overlay Man-
agement, Resource Discovery, Bio-inspired Computing, Grid Scheduling







Utilizzo di metodologie auto-organizzate per la gestione autonoma di
sistemi distribuiti

Sommario: Questa tesi vuole assumere come oggetto d’analisi degli algoritmi per la
gestione di diversi aspetti dei sistemi distribuiti, nonché la loro implementazione tramite
I'impiego di meccanismi auto-organizzati, adattivi e bio-ispirati. Tre sono i temi trat-
tati nella tesi: la gestione di una rete overlay basata sulla tecnologia peer-to-peer (P2P),
la ricerca d’informazione attraverso metodi completamente distribuiti, e 'allocazione de-
centralizzata di compiti su un insieme di sistemi distribuiti. Per quello che riguarda il
primo tema, ovvero la gestione di un owverlay P2P, viene descritto un algoritmo che mira
all’ottimizzazione delle connessioni tra sistemi ispirato al comportamento delle colonie di
formiche. Le connessioni vengono modificate dall’algoritmo riducendo sia il diametro della
rete sia il numero di collegamenti ridondanti, al fine di limitare il traffico generato dalla
comunicazione tra sistemi. L’idea iniziale si evolve in due implementazioni completa-
mente distribuite, chiamate BLATANT-R e BLATANT-S. Successivamente, per permettere
la ricerca d’informazione sulla rete, presentiamo un protocollo decentralizzato che migliora
lefficienza dei metodi di ricerca esistenti. La soluzione proposta & basata sullo scambio
di informazioni tra i nodi della rete attraverso un protocollo epidemico. Infine, per offrire
un’ottimale allocazione di compiti sulle risorse disponibili (per esempio in una griglia com-
putazionale, o grid), discutiamo un algoritmo di schedulazione completamente distribuito
chiamato ARZA. Le soluzioni proposte nella tesi sono valutate dettagliatamente, discuten-
done i pregi e i difetti. Sulla base della ricerca presentata in questa tesi, & nostra opinione
che i metodi auto-organizzati possano apportare importanti benefici per cid che concerne
Iefficienza, la robustezza e I'affidabilita dei sistemi distribuiti.

Parole chiave: Sistemi distribuiti, P2P, Auto-Organizzazione, Ricerca d’informazione,
Sistemi Bio-ispirati, Allocazione sul grid
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CHAPTER 1

Introduction

Contents
1.1 Motivation . . . . . . ¢ i i i i i i i i e e e e e e e e e e e e e e e 2
1.2 Evaluation Scenario . . . . . ¢ v v v v o o o o v v o o st e 0 b e e 4
1.3 Research Problem . .. ... ... ... 5
1.4 Contributions of thisthesis . .. ... ... .............. 5
1.5 Structure . . . . . @ i i i i i i it e e e e e e e e e e e e e e 6

Distributed systems describe a collection of independent computers that appear to the
user as a single entity [276]. Distributed systems can be classified in different categories
according to their structure and purpose: peer-to-peer systems [58|, ad-hoc networks [222],
mesh networks [18], grid systems [119], etc. Despite some differences, the common goal
driving the development and deployment of distributed systems is the ability and will-
ingness of the participating entities to share local resources with the community, such as
files in peer-to-peer systems or computing resources in grids. The benefits of distributed
solutions are functional separation, improved reliability, higher scalability, and reduced
costs [276]. On the downside, distributed systems are inherently more complex to manage,
difficult to secure and to fully exploit than their centralized counterparts. A number of
techniques for managing the issues raised by distributed applications (such as coordination
and synchronization) have already been proposed in the past; unfortunately, the scale,
dynamism, volatility, and security concerns of current scenarios often require rethinking of
new solutions [245]. Moreover, the endowments of distributed solutions are often hindered
by the complexity required for the management of the underlying infrastructure. Conse-
quently, solutions that simplify administration and lessen the burden of configuring and
optimizing distributed systems are required.

Self-organization and adaptiveness can be considered as desirable features for improving
in this area and establish reliable, efficient, and scalable distributed solutions. In partic-
ular, self-organizing systems have been put forward as a way to overcome the complexity
bottleneck [107], by replacing complex centralized control with fully distributed operation
emerging from the interaction and coordination between a multitude of simple components.
In accordance with the definitions proposed in [107, 126], we understand the term organiza-
tion as structure with function. Whereas structure concerns the arrangement (or order) of
components in the system (for example, the topology of a network), function is related to
its purpose. Under this definition, a self-organizing system is able to spontaneously create
and maintain a functional structure without central control, and self-organization refers
to the spontanous emergence of a global order [171] (as opposed to chaos and entropy)
resulting from distributed control and local interactions [145]. The distributed nature of
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self-organizing systems provides a number of advantages over their centralized analogues,
such as resilience, robustness, graceful degradation and recovery from errors [145]. Rely-
ing on the interrelationships among a large number of different elements composing the
system as well as positive or negative feedback mechanisms, self-organized solutions are
intrinsically dynamic; nonetheless, such dynamicity is not arbitrary, but rather convergent
toward preferable configurations that optimally fulfill the purpose of the system. In this
regard, the adaptiveness of a system refers to its ability to modify its organization in order
to optimally fit its purpose to the conditions of the environment [145].

Our research spans over different concerns, such as communication, information re-
trieval, and resource allocation. Accordingly, this thesis addresses major critical aspects of
the design, implementation and deployment of distributed systems, and offers autonomic
solutions for building an optimized peer-to-peer overlay, supporting efficient resource dis-
covery, and promoting fully distributed task allocation. Following the separation of con-
cerns proposed in [151], we divide our system into different functional components, namely
overlay management, resource discovery, and task allocation. The peer-to-peer overlay
represents the foundation of our work, as it provides an adaptive communication infras-
tructure on top of which high-level applications have been implemented. More specifically,
a resource discovery mechanism that exploits the characteristics of the overlay and lo-
cal shortcut caches to efficiently forward queries has been implemented. Additionally, a
task allocation protocol has been designed to enable dynamic and optimal distribution of
computing tasks across all available resources. In the rest of this chapter, we explore the
motivation behind our research, discuss the considered evaluation scenario, and highlight
the benefits introduced by our solution.

1.1 Motivation

In recent years, the availability of a large number of networked computers, high-bandwidth
connections, as well as the general adoption of broadband access to the Internet, enabled
the deployment of distributed systems achieving unprecedented scale and popularity. In
this context, grids have emerged as infrastructures for high performance computing, that
serve a number of scientific communities [72| and leverage a large pool of geographically
dispersed resources to solve large and complex tasks. Conversely, peer-to-peer file-sharing
networks |3, 8] have become an accessible mass-phenomenon used by millions of users world-
wide. Despite the progress made in simplifying end-user interaction with such distributed
systems, managing large scale deployments, enabling efficient access to their resources, and
dealing with security aspects remain active domains of research [289, 221].

Based on the review of the most common unjustified assumptions of distributed com-
puting presented in [245] we can identify several characteristics that should be accounted
for in order to create robust and reliable systems: fault tolerance, asynchronous operation,
efficient network usage, security management, and support for dynamic and heterogeneous
networks. More specifically, distributed systems must be able to cope with failures of both
hosts and the underlying network infrastructure: failures should be detected and an appro-
priate response should be triggered to ensure proper operation of the system. Distributed
applications must also not depend on synchronous operations, as communication latency
between different hosts may significantly differ [307], and avoid assuming that the system
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is composed of homogeneous resources.

From a structural perspective, different architectures have been proposed. Depending
on the scale, constraints, and goals, centralized, hierarchical or fully distributed man-
agement is employed. On one end, centralized approaches represent simple solutions to
serve a large number of geographically sparse clients with minimal bandwidth consump-
tion. Central systems are easier to secure, and data consistency can be easily ensured.
Meanwhile, fully distributed designs reduce maintenance costs and increase robustness by
avoiding dependency on central systems that represent potential single point of failures.
Unfortunately, such a design introduces coordination challenges and increases traffic.

Peer-to-peer applications represent a widely known example of fully distributed sys-
tems, while grids traditionally rely on centralized control and service provisioning. These
opposite approaches mainly reflect the differences between peer-to-peer systems and grids.
Peer-to-peer systems are highly dynamic systems, with less engagement from each partic-
ipant, while grids are relatively stable, persistent and reliable [275].

At the functional level, to solve the aforementioned management problems, research
has turned to autonomic computing [172] as potential solution for automated and adaptive
systems [211]. Autonomic systems promote self-configuration, self-repair, and autonomous
optimization of the quality of service. In this regard, information about the environment
can be coupled with specific management policies to enable autonomic operation of the
system in a fully decentralized way [95, 177]. Moreover, bio-inspired solutions [48] represent
a suitable approach to the problem, because they inherently support all the important self-x
features of autonomic computing.

Bio-inspired computing replicates natural phenomenons, such as genetics [176] or emer-
gent behaviors [98], to solve complex computational problems. In contrast to traditional
approaches, bio-inspired solutions are generally geared toward decentralized problem solv-
ing, with techniques resulting from the collaboration of several entities governed by simple
rules. In the context of network management, a number of bio-inspired methods have been
proposed to tackle problems such as routing in complex topologies [63] and load balancing
[210]. Emergence is of particular interest for distributed systems; in systems with emergent
properties the behavior is not a property of an individual entity, but rather the result of
collaborative interactions between all components. This advantage of emergent approaches
also affects the robustness of the system: whereas centralized approaches might suffer a
complete breakdown in case of failure, emergent solutions do not depend on single enti-
ties and thus represent reliable solutions capable of surviving unexpected situations and
problems.

Accordingly, the aim of this thesis is to investigate the implementation of novel self-
organized solutions to ease the deployment of distributed systems. In particular, we aim
at employing bio-inspired techniques to provide unsupervised adaptation to changes in
the environment. Furthermore, in order to address all issues related to centralization,
we propose to base our system on fully distributed mechanisms, and employ peer-to-peer
communication between the components of our solution. Security aspects are out of the

scope of this thesis; a review and analysis of security in peer-to-peer system is available in
[289, 30].
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1.2 Evaluation Scenario

The work presented in this thesis has evolved in the context of a novel middleware for grids
named SMARTGRID [150] !, the goal of which is to provide an abstraction layer for the
deployment of robust and reliable grid services on top of a multitude of loosely connected,
heterogeneous and volatile resources. The proposed solution thus aims at filling the gap
between grid applications and the computing resources.

Whereas currently deployed grid systems are relatively stable and comprised of a limited
number of nodes, the vision for next-generation grids foresees large-scale networks with a
highly dynamic and evolving behavior, with nodes joining and leaving the system in real
time and with the number of nodes increasing over time. SMARTGRID envisions a grid
computing environment that is open to a larger group of contributors than traditional grids,
and that requires less management effort. To increase robustness and avoid single points
of failure, SMARTGRID promotes loosely coupled peer-to-peer interaction between the
engaged entities. Each contributing site is independently managed according to local usage
policies; moreover, SMARTGRID is designed to integrate with, and make use of, existing
platforms and infrastructures, thus creating a complementary, instead of an alternative,
technology to increase efficiency. In this context, interoperativity with traditional resource
management systems is an essential feature of the platform.

The proposed architecture is composed of two independent layers that communicate
through an intermediate datawarehouse, as depicted in Figure 1.1.

Grid applications

boosoe

< SMART RESOURCE MANAGEMENT LAYER )

DATAWAREHOUSE
< SMART SIGNALING LAYER >
Resources

Figure 1.1: SmartGRID architecture

Smart Signaling Layer The Smart Signaling Layer (SSL) enables low-level communi-
cation between resources, and provides resource discovery services. The primary goal of the
SSL is to abstract from the heterogeneous and volatile nature of the underlying resources
and network infrastructure to provide a robust communication and service provisioning

'SMARTGRID is supported by the Swiss Hasler Foundation, in the framework of the ManCom Initiative
(ManCom for Managing Complexity of Information and Communication Systems), project Nr. 2122
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framework. Operation and services offered by the SSL degrade gracefully in the event of
network or site failure; for this, the system is based on a fully decentralized and distributed
design that avoids bottlenecks and single points of failure. Furthermore, research on the
SSL focused on the implementation of a self-organized and adaptive peer-to-peer solution
by employing bio-inspired methods. In this context, of particular interest are ant-inspired
approaches, as they have already proven to provide robust means for network-related prob-
lems such as routing [63] or load-balancing [210].

Smart Resource Management Layer The Smart Resource Management Layer (SRML)
is in charge of supervisioning the usage of resources and mediating interaction between the
user and the system by providing an interface for task submission and tracking. The SRML
exploits information from the SSL to efficiently schedule tasks either on local resources or
on remote nodes. Accordingly, the SRML interoperates with the existing scheduling in-
frastructure, and obeys to local and remote resource usage policies.

Datawarehouse The SSL and SRML communicate through a datawarehouse, which
provides both an asynchronous communication channel and a temporary storage. In the
context of the SMARTGRID middleware, the datawarehouse also helps maintaining clear
separation of concerns between the two functional layers.

Although the main contribution of this thesis falls within the Smart Signaling Layer,
research has spanned over all layers. In particular, the overlay management algorithm
introduced in Chapter 3 and the resource discovery protocol in Chapter 4 concern the
SSL, while the meta-scheduling framework presented in Chapter 5 concerns the SRML.

1.3 Research Problem

Different questions arise from the previously described scenario.

e “Can we exploit self-organization and bio-inspired solutions to provide an optimized
peer-to-peer communication and service provisioning framework?”

e “Can we improve existing resource discovery mechanisms using fully distributed bio-
inspired solutions?”

e “Can we provide efficient task allocation to optimally exploit a large number of re-
sources by means of a fully distributed scheduling mechanism?”

These questions summarize the research problem addressed by this thesis.

1.4 Contributions of this thesis

According to the requirements that arise from the research problem and the considered
evaluation scenario, the contributions of this thesis are threefold. First, it proposes an
algorithm for managing a self-structured adaptive peer-to-peer overlay, that is optimized
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to support efficient communication between nodes while avoiding single points of failures
and bottlenecks. Next, it introduces a generic method for improving resource discovery
effectiveness by exploiting local caches. Finally, it addresses the problem of efficiently
allocating tasks across heterogeneous resources by means of a lightweight meta-scheduling
protocol to fully exploit the benefits of distributed computing without imposing limitations
on local resource management. To achieve our goals, we introduce novel techniques and
make use of self-organized and bio-inspired methods in order to ensure robust and adaptive
behaviors.

In the context of the SMARTGRID project, this thesis also introduces a software plat-
form for the deployment of fully distributed bio-inspired solutions, in particular those
involving ant-like mobile agents. The generic nature of the latter enables its integration
into different projects that aim at implementing and exploiting distributed swarm intel-
ligence solutions. Furthermore, along with the aforementioned algorithms and protocols,
this platform represents a fully functional framework for supporting robust and adaptive
grid services in a heterogeneous environment, as envisaged by the SMARTGRID project.

1.5 Structure

This thesis covers the aforementioned topics as follows.

Chapter 1 provides an overview of the thesis, and discusses the motivations behind the
research topic as well as the open issues and challenges to be addressed. Furthermore it
defines the research problem and highlights the contributions of the thesis.

Chapter 2 studies the related work in the field of peer-to-peer systems. Our discus-
sion covers the two main classes of existing peer-to-peer solutions, namely structured and
unstructured ones, and draws some comparisons of the corresponding drawbacks and ad-
vantages with help from a detailed analysis of noteworthy projects. Some theoretical
foundations about graph theory are also presented.

Chapter 3 consolidates the knowledge gained through this literature review in a list of
requirements that constitute the guidelines for validating our solution for the management
of a peer-to-peer overlay. Consequently, the fundamental block of our research, namely
that of a self-organized optimized peer-to-peer overlay is presented. Our novel overlay
management algorithm, called BLATANT, represents a fully distributed solution based
on bio-inspired techniques. The logical foundations of our approach are firstly validated
by an analytical construction and subsequently by empirical experiments based on two
implementations that attest the qualities of the solution.

In Chapter 4 we deal with the problem of providing an efficient resource discovery
mechanism by means of a fully decentralized proactive caching system. The proposed
solution improves existing flooding protocols by exploiting local caches on each node, that
are updated using an epidemic protocol, to direct queries toward nodes that are more
likely to provide the required service. Extensive evaluation assesses the improvements in
the recall rate and the increased efficiency provided by the proposed search scheme.

Chapter 5 concerns distributed task allocation, thus putting more focus on the con-
sidered grid computing scenario. In this view, a review of existing scheduling solutions is
presented. Subsequently our fully distributed meta-scheduling protocol is introduced and
evaluated.
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Chapter 6 reviews the proposed solutions in the context of the SMARTGRID project.
In particular, a prototype platform for the development and deployment of some of the
aforementioned bio-inspired algorithms is presented and relevant details are demonstrated.

Chapter 7 draws the conclusions of this thesis, and summarizes the results and achieve-
ments of the work presented in the preceding chapters. Moreover, food for thought and
pointers for future research based on the current work are provided.
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Peer-to-Peer systems refer to a distributed computing paradigm that is built upon net-
work architectures where nodes act as both servers and consumers. In contrast, traditional
client-server models exhibit a clear separation between nodes providing services and those
making use of it.

A network overlay is a logical topology maintained on top of another network, either
a physical one (built of wired or wireless communication links) or a virtual one (another
overlay). Peer-to-Peer systems are typically managed by application-level protocols that
depend on the underlying network facilities (such as TCP or UDP communication): each
node of the overlay needs to be able to communicate with possibly all other nodes, provided
that the end address is known.

Peer-to-peer overlays are characterized by direct communication between the partici-
pating members, aimed at improving scalability, fault-tolerance and robustness compared
to centralized approaches. In contrast to physical networks, connections in an overlay are
logical, and depend on the ability of each node to address communication towards ar-
bitrarily any other node by exploiting the routing capabilities of the underlying network.
Physical and overlay networks can be abstracted to graphs, the topology of which is defined
by the (logical) connections between the nodes. In this respect, an advantage of overlay
networks over physical ones is the ability to easily modify or adapt the topology to meet
user-defined requirements.

Nodes connected to a particular overlay may be referred to as a community: nodes
within the same community typically share some resources amongst each other, such as
services or data. Building and maintaining such communities, namely providing mecha-
nisms to allow nodes to join the overlay and to contact other nodes, is achieved by means
of membership management protocols [285, 123]. These protocols also aim at providing
an efficient communication channel to spread information, to implement anonymous and
secure communication, or to overcome censorship barriers.

The focus of peer-to-peer communities is to enable collaboration amongst a large num-
ber of systems and ease the sharing of information between them. Accordingly, research in
this field is concerned with both the problem of maintaining an overlay as well as that of re-
trieving information. This chapter focuses on both issues, as a review of existing solutions
cannot neglect the existence of a close relation between overlay management and resource
discovery. More specifically, while all peer-to-peer systems are characterized by their lack
of central authority, different peer-to-peer architectures follow diverse design principles
depending on the strategies developed to retrieve information. An important step in the
understanding of these systems is identifying the major differences between approaches,
and highlighting their benefits and drawbacks. We survey existing research work aiming at
tracing the principles of peer-to-peer systems and presenting some noteworthy solutions,
restricting our discussion to information storage and retrieval peer-to-peer system on a
fixed network infrastructure. We thus omit topics such as overlays for streaming (P2PTV)
[143, 190], voice communication (VOIP) [11, 264], or mobile and ad-hoc communication
[228, 89]. The purpose of this review is to briefly highlight key design concepts of existing
systems. A thorough analysis and taxonomy of the extensive literature available on this
topic is outside the scope of this thesis. Nonetheless, an in-depth analysis of the current
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state-of-the art of peer-to-peer approaches is available in [58].

The foundations for understanding the characteristics of an overlay network lie in their
mathematical properties. In this regard, an introduction to graph theory concepts that
will be used throughout the rest of this thesis are presented in Section 2.1. Our discussion
will then focus on the structural differences between existing solutions, with Section 2.2 in-
troducing peer-to-peer information systems and highlighting the main differences between
current approaches, namely structured and unstructured designs. An in-depth look of
structured systems is provided in Section 2.3, with a discussion of noteworthy implementa-
tions and a detailed review of the mechanisms for storing and retrieving information in the
overlay. Conversely, Section 2.4 presents unstructured solutions, while Section 2.5 analyzes
the problem of churn in peer-to-peer overlays. Section 2.6 elaborates on the application
of peer-to-peer technologies in the field of grid resource discovery. Finally, this chapter
concludes in Section 2.7, with a discussion on findings that enables a better understanding
of the goals and issues that are addressed by our solution.

2.1 Graph theory fundamentals

The characteristics of a computer network can be analyzed by considering it as a directed
graph. In this respect, to better understand the terms used throughout the rest of this
thesis, a brief but precise definition is required. Further analysis on the topic can be found
in [294].

A graph is defined by a triple (V, E, —), where V is a set of vertices, E a set of edges,
and — a relation associating two vertices (called endpoints) and an edge. A graph can be
used to represent computer networks consisting of nodes and un-directed links: accordingly
nodes are the vertices, and links are the edges of the graph. Similarly, network overlays
can be mapped to graphs where edges are defined by logical connections between nodes.
For simplicity, in the rest we overlook the differences between the terms graph, network,
topology, and overlay, and use either one of them interchangeably. In the same spirit, the
terms node and vertez, as well as edge and link will also be used interchangeably.

For a graph G = (V, E), we define n € G < n € V. A node n; in a graph G = (V, E)
is adjacent to another node n; if there exist an edge (n;,n;) € E. The neighborhood
set IN; of node n; is the set of nodes adjacent to n;, the size of of which determines the
degree of a node. A graph is said to be undirected iff : Vn, € V : Vn; € N; — n; € Nj,
making the adjacency property commutative; otherwise the graph is said to be directed.
In a computer network we consider a node n; as connected to another node n; iff n; is
adjacent to n;, i.e. n; € N; A n; € N;. Figure 2.1 illustrates an example graph where
V ={a,b,c,z,y}, E = {(b,a),(c,b),(b,x),(x,b),(c,y), (y,c)}. Arrow lines depict edges
connecting two endpoint vertices, whereas double arrow lines indicate undirected links. A
path in G is a succession of nodes n; € G, such that there exists a link between every node
in this succession.

In a physical network, each link is a physical connection (either wired or wireless)
between two nodes. In an overlay network, a (logical) link between two nodes exists if
both have knowledge of each other and an active communication takes place. A graph
G is connected if for each pair of nodes n;,n; € G, there exists at least a path between
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Figure 2.1: Example graph

them. Furthermore, a graph is said fully connected if there exists a link between each pair
of nodes. Conversely, if a graph is not connected, it is said to be partitioned.

Several measurements are useful to describe high-level properties of a graph. In this
regard the degree of a node is its number of neighbors; if the graph is directed it is possible to
distinguish between in-degree and out-degree, for links originating from a node, respectively
ending on a node. Related to the degree, important measures that help defining the
complexity of a graph are the average degree, which represents the mean degree across all
nodes, and the degree distribution, which expresses the probability that a node has exactly
a given number of neighbors.

The eccentricity of a node n in a connected graph G is the the greatest distance between
n; and any other node n; € G. Accordingly, the diameter of a graph G is the maximum
eccentricity of any node n; € G, the radius is minimum eccentricity of all nodes n; € G,
while the average path length represents the average eccentricity.

The clustering coefficient of a graph measures the degree to which nodes share common
neighbors. For a node n; with neighbors degree k, the local clustering coefficient Cj is
computed as the quotient of the number n of existing links between n;’s neighbors and the

number of all possible links between them (@)
2n
Ci = k(k —1)

The clustering coefficient C of a graph G is the average of the local clustering coefficients
of all vertices:

1
C=— Ch,;-
a] 2 On

n;€G
In a social network, the clustering coefficient is the probability that two friends of a
person are also mutual friends. Finally, the girth of a graph is the length of the shortest
cycle. If the graph does not contain any cycles (for example, a tree graph), its girth is
infinite.

2.2 Peer-to-peer information systems

The main challenge of peer-to-peer system is efficient information retrieval mechanisms
that provide satisfactory results while being scalable and consuming a reasonable amount
of bandwidth. We measure this level of satisfaction by computing the hit rate (also known



2.2. Peer-to-peer information systems 13

as recall rate), namely the ratio between retrieved results out of all possible ones. Because
retrieval queries typically generate less traffic than actual content transfer, some peer-
to-peer systems, such as Napster [9] and BitTorrent [1], implement dedicated centralized
indices and rely on peer-to-peer interaction only for data exchange. Centralized indexing
schemes are simpler to design and provide efficient (network traffic-wise) search, but create
single points of failure, as well as robustness and scalability issues. On the other hand,
pure peer-to-peer solutions remove the bottleneck of central servers, and make use of fully
distributed search mechanisms across equipotent nodes at the expense of longer response
times. Moreover, fully decentralized search in pure peer-to-peer overlays involves an addi-
tional trade-off between the quality of results and the generated traffic. As a consequence,
hybrid [300] (hierarchical) solutions have been developed: some of the peers, typically the
ones with greater computing capabilities or better connectivity, are used to mediate re-
quests of other peers and cache information for later usage. Hybrid solutions recognize
and exploit the heterogeneity of many peer-to-peer networks, with great variations in the
capacity of each peer (both in terms of computational resources and connectivity).

2.2.1 Classes of Peer-to-Peer Systems

Because of the drawbacks of centralized indexing architectures, research on peer-to-peer
systems mainly focuses on pure and hybrid solutions. In this context, the challenges raised
by the dynamic and distributed nature of peer-to-peer systems has led to the development
of different solutions for both the membership management problem, and the data manage-
ment one. Two main classes are generally recognized [193, 58|: structured and unstructured
overlay networks. In the former there exists a tight relation between the information shared
on the overlay and the topology (structure) of the overlay itself, while in the latter freedom
is given in both the construction of the overlay as well as in the storage of the data.

Structured solutions can be compared to a well maintained library, where books are
classified by topic and alphabetically sorted. The location of a book can thus be precisely
determined given that its title is known. While such precise organization enables very
efficient search by title, it still fails to support more complex queries, such as “All books
with a butterfly on the cover”. Moreover, an effort is required to keep order within the
library: when a new topic is added or a shelf is full, books may be moved from one shelf
to another. Conversely, unstructured solutions can be compared to a room with a lot of
books laid on the floor: while searching for a book by title becomes more challenging, no
particular care is required when adding or removing a book.

Both approaches inherit the benefits of distributed systems such as fault resilience
and a lack of centralized control, however they bear important differences that need to be
considered and discussed. Accordingly, the remainder of this chapter aims at reviewing the
main characteristics of a number of structured and unstructured systems, highlighting their
advantages and weaknesses. Our goal is to identify the requirements, the open challenges,
as well as possible solutions that will drive the implementation of a novel peer-to-peer
overlay to support resource discovery in our grid validation scenario.
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2.3  Structured Solutions

Structured solutions, also known as Distributed Hash Tables (DHT), maintain topologies
using deterministic algorithms in order to enable network efficient resource discovery and
bounded delay performance. Contents shared by nodes are associated with an identifier,
and all identifiers are then associated to nodes according to specific hash functions. There
is thus a strong correlation between the content and the node that will store it. In order
to locate content on the overlay, a lookup function is used to resolve the routing path
to the node associated to the content’s hash. Accordingly, the query can be successfully
routed through one or multiple steps to the node storing the content. In this section several
examples of DHT systems are presented and discussed.

2.3.1 CHORD

CHORD [269] assigns to each node an identifier of m bits within a circular space of size 2™,
so that the network is organized as a logical ring. Nodes know their successor in the ring,
i.e. the node whose identifier follows in the identifiers’ space. Content shared by nodes is
also assigned an identifier (or key), which is typically a hash of the content’s data, modulo
m bits, generated using a consistent hashing function [169]. Consistent hashing functions
ensure that adding or removing buckets in the table does not significantly concern the
remaining ones; in this context, their use minimizes the number of nodes and keys affected
by the addition or removal of a node (i.e. a bucket in the DHT), and helps spreading keys
evenly across available nodes. A key K is published on the node referred to as successor(K)
whose identifier matches K or follows it.
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Figure 2.2: Example CHORD ring (m=3)

Figure 2.2 illustrates an example of a ring topology with m = 3: not all of the 23 = 8
available identifiers are allocated to nodes. For all possible keys that can be mapped on
the ring, the values for successor(K) (i.e. the node to which a key K is assigned) are
indicated. Keys 0 (000) and 5 (101) are assigned to nodes N1 (001), respectively N6 (110)
because a node, the key of which exactly matches them, does not exist in the overlay.

To speed up the lookup operation, each node n maintains a routing table (called finger
table) of size m that contains the identifiers of other peers in the ring: the entry at the
ith position (1 < i < m) in the finger table corresponds to the first node that succeeds n
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by at least 2¢~! hops in the ring, i.e. successor(s) with s = n + 2¢=1. Table 2.1 lists the
contents of the finger table corresponding to node N3.

i s successor(s)
1{3+20=4|N4
23 +2=5|N6
3(3+22=7|N7

Table 2.1: Example CHORD finger table for N3

Lookup procedure In order to find successor(K) in the overlay, either to build up the
finger table or to lookup for a key, a node starts by querying known nodes starting from
the one that appears closer to K, and repeats the process until the target peer has been
found. The routing cost in a CHORD overlay of N peers is of O(logN) hops.

Joining and leaving A node joins the overlay by contacting one of the existing peers
and finding its position in the ring by querying for the key associated with its identifier.
When a node joins the overlay or leaves the system, the successors pointer and finger
tables of nearby nodes in the ring need to be updated. CHORD solves this by periodically
executing a stabilization procedure on each node to rearrange keys and update the finger
table. To provide resilience in the event of successor’s crash, each node maintains a list of
nodes that succeed it in the ring: if a successor fails to respond to a query, one of the known
backup successors is contacted. The cost of node join or leave is O(log?N) messages.

Further research A number of applications use CHORD as the underlying peer-to-peer
overlay. Notable examples are the COOPERATIVE FILE SYSTEM (CFS) [88] which employs
a CHORD overlay to locate data blocks on servers, project SPOVNET [43] which aims at
creating a communication infrastructure over heterogeneous technologies and uses CHORD
to implement its routing scheme, and a CHORD based DNS service [82]. Additionally,
a self organized approach, named SELF-CHORD [113], proposes the use of bio-inspired
mobile agents on a CHORD overlay to self-organize keys by clustering them on nodes. The
overlay is constructed and maintained as in CHORD, but content’s keys and node’s keys are
independent, as there is no need to assign a key to a precisely specified peer. Data is instead
grouped into different classes, with each element in the same class sharing the same key
value. Mobile agents reorganize the keys in the overlay using a clustering approach similar
to [114]. Each node computes an average value called centroid based on the numerical value
of the stored keys: agents move keys on the overlay in order to minimize the distance of
each key to the centroid of the current node. Routing of queries is based on an estimation
of the key distribution over the overlay that allows for jumping to nodes that are close to
the target.

2.3.2 KOORDE

KOORDE [166] builds on the principles of CHORD by using a ring topology augmented
with de Bruijn graphs [57] links instead of a finger table. De Bruijn graphs are composed
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of 2% nodes, for a given number of bits b, where each node is assigned one of the avail-
able numerical values in [0,2°[. Each node m is connected with nodes 2m mod 2° and
(2m + 1) mod 2.

Lookup procedure To route a message from = to y in a de Brujin graph each hop
is resolved by progressively replacing z’s low-order bits with y’s high-order ones, i.e. by
shifting « to the left and introducing y’s high-order bits on the right. For example, in
the de Bruijn graph shown in Figure 2.3, to route a message from node 110 to 001, the
sequence of traversed nodes is 110 — 100 — 000 — 001.

Figure 2.3: Example de Bruijn graph for b = 3. The highlighted links illustrate the routing
path from node 110 to 001.

Because in a real network not all available identifiers 2° are used (typically b = 160),
KOORDE uses an adaptation of a de Bruijn graph to overcome the problem of missing
(imaginary) nodes: each node m is connected with both the first node succeeding it on the
ring, and the first existing predecessor of 2m mod 2°. Figure 2.4 shows a simple KOORDE
topology with b = 3, detailing the shortcuts employed by each node. To provide fault
tolerance in the event of a node failure, not only the first predecessor of 2m mod 2° is
known, but also the O(logN) predecessors of it.

To route a message in the overlay, the previously described routing algorithm is adapted
to support imaginary nodes by computing hops through them. Accordingly, in a Ko-
ORDE network with N nodes with a node degree of O(log(N)), it is possible to achieve
O(log(N)/loglog(N)) hops routing.

Joining and leaving Because of the similarity between KOORDE and CHORD, the for-
mer uses the same procedures for joining the overlay, maintaining proper connectivity and
recovering after abrupt disconnections by means of a stabilization process.

2.3.3 PASTRY

PASTRY [246] is a distributed peer-to-peer overlay infrastructure that bears similarities
to Plaxton meshes [223]| and makes use of prefix routing [28|. Nodes are assigned random
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node | s = 2m mod 2° | predecessor(s)
000 000 111
001 010 001
010 100 011
011 110 100
100 000 111
101 010 010
110 100 011
111 110 100

Figure 2.4: Example KOORDE overlay for b = 3. Values in italic in the table represent
imaginary de Bruijn neighbors that do not exist in the overlay.

unique identifiers of length & bits (k = 128) that map uniformly into a circular space of size
2%: nodes can simultaneously act as servers (storing objects), routers (addressing incoming
messages to the next hop in the overlay), or clients (initiating lookups). Content shared
in the network is assigned a key in the same namespace as node identifiers, meaning that
a lookup operation is equivalent to routing a message towards a node.

Lookup procedure For the routing process, node and content identifiers are interpreted
as digits with base 2°, where b is a user-defined parameter typically set to 4. This value
determines both the amount of information stored by each node, as well as the performance
of the routing process: for an overlay of N peers, the routing algorithm is typically able
to deliver a message to a destination in less than O(logy N) steps. The routing process
itself makes use of the node’s identifier or the content’s key to forward incoming messages
to the node the identifier of which is numerically closer to the target. More specifically, at
each routing step, the message is forwarded to a known node whose identifier shares with
the target a prefix that is at least one digit longer than the prefix that the target shares
with the current node’s identifier. If no such node is known, the message is forwarded to
a node whose identifier shares a prefix with the key as long as the current node, but is
numerically closer to the key than the current node’s identifier.

To support routing, nodes have to maintain several data structures that actively com-
pose their node state: a routing table, a neighborhood set, and a leaf set. The routing table
contains logys N rows, with 22 — 1 entries each; for every node X, each entry in row n of the
local routing table is a pointer (i.e. IP address) to a node whose identifier shares the first
n digits (prefix of length n) with the identifier of X, but differs at least in the (n + 1)
digit. The neighborhood set contains the addresses and identifiers of nodes that are in the
proximity of X, and it is used to ensure that a message is forwarded to nodes with minimal
distances. The leaf set is divided into two subsets, in order to store references to nodes the
identifiers of which are either numerically larger, or smaller than that of the current node.
An example of the state of a node is illustrated in Figure 2.5.

When a message is received, a node checks whether the identifier is within the bounds
of the leaf set. If this is the case, the message is forwarded to the node in the leaf set the
identifier of which has the minimal distance to the key in the message. Otherwise, the
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Routing table Leaf set Neighborhood
row entries smaller | larger Set
0 0212 * 2233 | 3322 1211 1321 1231
1 1012 | 1131 * 1333 1132 1312 1122
2 1203 | 1211 | 1223 * 1111 1333 1322
3 1230 | 1231 * 1233 1200 1321 1002

Figure 2.5: Example PASTRY node state for node 1232 (b = 2, and key size reduced to 8
bits for simplicity). Underlined text in the routing table highlights the prefix shared with
the 1232 identifier, respectively bold the non-matching digits.

routing table is consulted and the message is forwarded to a node that shares a common
prefix with the message’s key by at least one more digit.

Joining and leaving A node Y can join the overlay by sending a special join message
to a node within the overlay; the key of this message is the randomly generated identifier
of Y. The join request is routed as a lookup request, and each traversed node sends its
state to Y so that the latter can fill up its own data structures. More specifically, to fill the
routing table, node Y will copy row n with the entries at row n from the node traversed
at step n.

PASTRY nodes keep track of failed peers by means of heartbeat monitors and by de-
tecting failures when forwarding messages. When a failed node is discovered, a recovery
procedure is initiated by its neighbors in order to restore their state.

Further research Pastry is used to manage the overlay in SCRIBE [64], a decentralized
multicast infrastructure: links between nodes are used to create multicast trees that enable
efficient dissemination of messages. Furthermore, SPLITSTREAM [67] builds on SCRIBE to
provide efficient high-bandwidth content distribution. Another project, PAST [100], im-
plements a distributed storage solution with support for replication and load-balancing.
Finally, SQUIRREL [155] implements a distributed web cache shared amongst a large num-
ber of machines.

2.3.4 TAPESTRY

TAPESTRY [309] (now called CHIMERA) uses a similar approach to PASTRY, but also deals
with replication by means of multiple roots for each object. TAPESTRY uses a variation of
Plaxton meshes where each peer is assigned a 160 bit identifier represented by a k digit key
with base b. Nodes maintain a routing table that is used to forward messages by means of
a prefix routing algorithm. The routing table is organized into rows with multiple levels:
entries at the i*® row, j** level, point to the closest nodes that share with X a common
prefix of exactly j — 1 digits, and whose j¥* digit is equal to X’s j** digit plus 1. Figure
2.6 illustrates the routing table of an example TAPESTRY node with a digit identifier equal
to 1232 (b = 2). To increase the resilience of the network, multiple references are kept for
the same entry in the table. Nodes can publish new data in the DHT by determining the
node that the content should be assigned to, and which will be referred to as the root of
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the object. To achieve this, a lookup query with the identifier of the content is started.
To improve both resilience and the lookup performance, each node along the routing path
also stores a reference to the node where the request originated. Nodes that have shared
contents in the overlay periodically renew their submissions by repeating the publication
process.

Routing table

row | / level — 1 2 3 4

1 2x % x | 13xx | 120« | 1233
2 3xx% | 10%%x | 121% | 1230
3 Ox %% | 11xx | 122x | 1231

Figure 2.6: Example TAPESTRY routing table for node 1232 (b = 2, and key size reduced to
8 bits for simplicity). Underlined text in the routing table highlights the prefix shared with
the 1232 identifier, respectively bold numbers the non-matching digits. Entries contain
addresses of multiple nodes matching the given pattern: for example, entry 114x may
contain the pointers to 1123, 1102, etc.

Lookup procedure TAPESTRY lookup procedure uses a longest prefix matching routing
algorithm. At each step nodes look in the table for the closest known node for the requested
identifier: the message is progressively forwarded toward the node that is responsible for
the content’s key. Thanks to replication along the routing path, requests are most likely
fulfilled before reaching the object’s root, with the upper bound for number of hops being
equal to O(log(N)).

Joining and leaving Nodes join at a position determined by a lookup of their own
identifier in the network. The incoming node interacts with nodes on the routing path to
retrieve information used to fill up the neighbors map. To finish the join process, nodes
update their shared keys with adjacent peers. Finally, heartbeat messages are used to
detect abrupt disconnections and ensure reliable operation of the overlay.

Further research OCEANSTORE [180] is a storage solution originally built on TAPESTRY
(now based on BAMBOO [237]) that provides secure archiving on an overlay of untrusted
servers. Another notable project that exploits a TAPESTRY overlay is BAYEUX [312], which
implements a multicast infrastructure.

2.3.5 VICEROY

VICEROY [197] uses connected rings and an approximation of a butterfly network, while
the mapping between content’s keys and nodes resembles the principles of CHORD. An
overlay of N peers is divided into log(IN) levels, with each level organized as a ring; all
nodes are also connected in a global ring. Each node is assigned an identity that maps its
discrete identifier to a real identifier in the [0,1] interval, and is randomly assigned to a
level . Beside from connections with its predecessor and successor in the corresponding
ring, each peer is provided with additional connections to other nodes. In particular, five
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long range contacts are created with peers located in different levels. A node with identity
n in level [ has connections with two peers at level [+ 1 (down links to a node in level [+ 1
at a distance of 1/2!, i.e. a node at level [ + 1 with identity at least n + 1/2!), one at short
distance, one at long distance, and one connection with a peer at level [ — 1 (up link to a
close-by node).

Lookup procedure To locate an item in the overlay, nodes forward the request following
their up link until the identifier of the contacted node is lower than the item’s key. Then,
either ring or down links are used to continue routing up until the item has been found.
As an example, consider the simple VICEROY overlay depicted in Figure 2.7. To route a
message from node 7 to node 10, the forwarding path is: 7 — 6 (up link) — 5 (up link) —
10 (down right link). The routing process in an overlay of N nodes requires O(log(N))
hops.

Joining and leaving Nodes have to select a level to connect to, and thus need an
estimate of the size of the overlay. Instead of implementing a costly network size estimation
algorithm, a node s estimates the size of the network as N’ = 1/distance(s, successor(s))
(where successor(s) is the successor in global ring). Node s selects its level uniformly
at random in the interval [1, N’], and then contacts its successor in the ring of that level
to complete the join process. When a node leaves, the remaining nodes reorganize their
connections accordingly.

™\ "Down-right" link <~ "> Level ring

> "Down-left" link

Figure 2.7: Example VICEROY network with 16 nodes. Dotted lines indicate the mapping
between discrete identifiers and the real ones (identity) in the interval [0,1]. Up links are
omitted for simplicity.
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2.3.6 CAN

The CONTENT ADDRESSABLE NETWORK (CAN) [234] assigns to each node (and content’s
key) a portion of a d-dimensional toroidal key space (Figure 2.8). Keys for both nodes and
contents are generated by means of a uniform hash functions that maps to a point in the

space. Each peer stores the keys lying within its region; moreover, for every dimension,
nodes are aware of close-by peers managing neighbor regions.
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Figure 2.8: Example CAN 2-dimensional space with 12 nodes

.
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Lookup procedure To lookup for a key, the hash function is applied to determine the
associated point in the key space. Lookup messages are progressively forwarded, using a
greedy routing algorithm, to nodes that are closer to the zone containing the point. The
average path length in an overlay of size N with a uniform distribution of the keys in d
dimensions is O((d/4)/(N1)).

Joining and leaving To join the overlay, a node selects one of the existing peers and
sends its request. The zone managed by the latter is split between the peers, and key-value
pairs lying in the joining node’s zone are transferred. Information about neighbor peers
is fetched by the incoming node and all involved nodes in adjacent zones are contacted
to update their neighbors’ sets. A node that leaves the overlay will hand over the keys
to a neighbor. To detect abrupt disconnections, nodes periodically exchange heartbeats
with their neighborhood: if a failure is detected, close-by peers coordinate to assign the
identifiers left over by the leaving node to the remaining peer that is currently responsible
for the adjacent zone of smallest size.

Further research The work presented in [299], extends CAN overlays with additional
shortcut paths, or expressways, that enable logarithmic routing and reduce latency. In a
similar way, [274] augments a CAN overlay with long links to create a small-world network.
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2.3.7 KADEMLIA

KADEMLIA [203] assigns to each peer and to each resource 160 bits key identifiers. Content
keys are stored on nodes the identifier of which is close to the key by using a bitwise XOR
metric. Each node maintains a list of log(NN) buckets, each of which contains k entries that
refer to other nodes in the overlay. Entries in the i bucket refer to peers at a distance
between [2¢,2¢1[. When for some key-value pair a node that is closer is detected, the
pair is replicated instead of moved to improve fault tolerance; for the same reason, nodes
periodically re-insert references to shared objects in the overlay.

Lookup procedure To route a message, peers compute the XOR distance @& between
their identifier and the destination, and use it to retrieve information from the buckets
table: entries in the corresponding bucket are used to forward the request. In contrast to
other DHT approaches, during a lookup KADEMLIA peers start parallel requests to other
peers; moreover, peers exchange routing information during each lookup. This behavior
minimizes the need for a separate exchange of information between peers.

Bucket table for 011 (N3)
row | range entries
[20...2 | 010 (N2)
[21...22[ | 001 (N1)
[22...23] | 100 (N4), 101 (N5)
Bucket table for 101 (N5)
row | range entries
[20... 21 | 001 (N4)
[2!...22[ | 110 (N6), 111 (N7)
[22...23[ | 010 (N2), 011 (N3)

N = O

N = O

Figure 2.9: Example KADEMLIA overlay with 8 nodes and sample bucket tables for nodes
011 (N3) and 101 (N5).

Figure 2.9 illustrates a simple KADEMLIA overlay with 8 nodes (NO...N7), and the
contents of the bucket table of nodes 011 and 101. To route a message from 011 (N3) to
111 (N7), N3 computes the XOR distance 011 & 111 = 100, and looks for entries in its
table in the range distance of 4. Because 111 is not found, nodes 100 (N4) and 101 (N5)
will be queried in parallel. Hopefully, N5 can return the address of 111, N7, so that N3
can successfully send its message as well as update its bucket table.

Joining and leaving To join the overlay, a node x contacts one of the existing nodes
y and inserts it into the appropriate bucket. Successively, a node lookup is started on x
to search for the key x: because y is the only available neighbor, x will start exchanging
neighbors with it and thus gain knowledge of additional peers in the overlay. Liveness of
nodes is monitored by checking the incoming messages and the successfulness of outgoing
requests: references to nodes that stop communicating in the bucket table are removed
following a least recently seen eviction algorithm.
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Further research KADEMLIA is currently employed by several P2P file sharing [13] and
content distribution [122, 12] architectures to support efficient keyword search.

2.3.8 SKIPNET

SKIPNET [140] uses a distributed approximation of skip lists [226] to implement a DHT
with locality properties (a feature typically neglected in other systems). A skip list is
a data structure composed of multiple levels of linked lists: at the base level all nodes
of the list are present, at higher levels pointers enable to skip over elements at different
granularity. SKIPNET allows for control of the location where the data is stored in the
overlay, thus increasing availability and security. Nodes are referenced by their unique
name identifier. Instead of using a list, the overlay is organized as a double-linked ordered
ring of N nodes; each node stores a routing table containing 2log(N) pointers organized
as log(N) levels with 2 entries each. References at higher levels enable longer jumps (or
skips) in the overlay. Pointers at level h in the table refer to nodes that are approximately
2" hops to the left and right in the base ring. Instead of using a precise distance measure,
these nodes are determined by splitting the ring at the lower level and probabilistically
assigning nodes to the resulting rings. Figure 2.10 illustrates the resulting levels and rings
in an example SKIPNET composed of 8 nodes. At each level, nodes are ordered by their
name identifier in their corresponding ring. The latter determines the numerical identifier
of the node, so that each node in a ring at level b shares the same high-order b bits of the
numerical identifier.

ONORO, ® ORZZE Routing table N3
W W W W Level 2 Level | Left | Right

0 N2 N4

Eelon :
(- x)x) O (v)— Level 1 NI | N5
@@@@@@@@ Level 0 2 N7 N7

Figure 2.10: Example SKIPNET infrastructure and routing table for node N3.

Lookup procedure SKIPNET supports both routing by the name identifier or by the
numerical identifier. To route a message by name, a node first checks the name identifier
to see if the message has to be forwarded left or right according to the shared prefix. If
the message and the node identifier share no common prefix, a random direction is chosen.
Subsequently, at each hop, nodes forward the message to the farthest node whose identifier
is not greater than the destination, by scanning the routing table starting from the highest
level. In the example overlay shown in Figure 2.10, a message from N3 to N6 is forwarded
to the left and to a referenced node at level 1, namely N5. To route a message by numerical
identifier, the algorithm begins by looking for a node in level 0 whose numerical identifier’s
first digit matches the target’s numeric identifier first digit. The algorithm then moves to
the node’s ring of level 1, and repeats the search by looking at the second digit. After a
finite number of steps, the destination is found.
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Joining and leaving When a node joins the overlay, it first needs to find the top-level
ring that corresponds to its numeric identifier. This is achieved by routing a message to
that numeric identifier. From this point on, the node retrieves its neighbors in the ring
and in lower level rings by similarly looking for its name identifier. When a node leaves
only the ring links at level 0 have to be repaired: this is performed by a repair process run
either upon notification of the leaving node itself, or as soon as the departure has been
detected by its neighbors.

2.3.9 P-GRID

P-GRID [14] builds upon a binary prefix tree (also known as ¢rie) and uses prefix matching
to resolve queries. Each peer is associated with a leaf in the tree, and is responsible for
a set of keys composing its key space partition. The prefix of a binary representation of
the data managed by a peer p determines its position in the tree, i.e. its path m(p). In
contrast to hierarchical solutions, the tree structure is not reflected in the actual topology
connecting the peers. Accordingly, nodes have to maintain routing tables that point to
nodes managing different subtrees thus different zones of the key space, and update them
using an epidemic protocol. More specifically, each peer p stores references to other peers
sharing a common path prefix of length [ with p, but with the last bit inverted. To
enable efficient range queries, content’s keys are computed using an order-preserving hash

0 1 Routing table A

m 1 | Prefix | Node
011 E

® OO0 B L

Figure 2.11: Example P-GRID and routing table for node A (w(A) = 000). Actual links
are not determined by the structure of the binary tree but by the contents of each node’s

function.

routing table.

An example of P-GRID is depicted in Figure 2.11: the key subspace is divided across
peers according to the keys’ prefix. Node A manages the 00 prefix, nodes B and C both
manage the 01 path to increase fault-tolerance, node D is responsible for 10, while nodes
FE and F store data with prefix 11. The illustrated routing table of node A contains
references to node E (with path 11, sharing no common prefix with 7(A)), and B (with
path 01 sharing a common prefix of length 1 with m(A)).

Lookup procedure To look up a key in the overlay a node first checks whether its path
is included within the key bit string. In this case, the key is stored within the peer and
the associated contents can be returned. Otherwise, the routing table is consulted and the
request is forwarded to a node whose path better matches the key’s prefix. The expected
cost for a lookup operation is O(log(N).

Joining and leaving When a peer connects to the overlay, the key space is divided and
shared with the incoming peer. If two peers are responsible for the same partition of the
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key space (i.e. they have the same path) they exchange references; if only a prefix of the
path is shared, the peer with the shorter key path extends its key by taking over some of
the keys.

2.3.10 Other approaches

Beside the systems presented in the previos subsection, we briefly review here other notable
examples of structured overlays.

HyYPERCUP [251] employs a hypercube graph and guarantees that nodes are visited
exactly once during a lookup operation (i.e. there is no retransmission of messages).
Because HYPERCUP merely proposes an overlay structure for efficient broadcast, it is not
concerned with allocating data to nodes or routing requests to particular nodes as in a
DHT. In this respect, efficient broadcasting in an overlay of N nodes can be achieved with
N — 1 message forwards. An extension of the protocol that uses semantic data to route
messages and reduce network overhead is presented in [244].

CycLoIiD [261] employs a d-dimensional hypercube that forms a cube-connected cycle
(CCC) [225] structure where each vertex is a cycle of d nodes. In comparison to other
solutions, each CyYCLOID node has a small and constant degree in that it maintains exactly
three connections: two cyclic connections and one cubical connection. This reduces main-
tenance costs in highly dynamic systems. An improvement over CYCLOID that combines
the CCC structure with a folded hypercube is presented in [187].

KEeLips [137] divides nodes into k affinity groups (0...k — 1). Each node maintains
references to nodes in its affinity group, in other affinity groups, and references to files
shared by other nodes. This information is updated by means of periodically gossiping
partial state information. In contrast to other structured approaches, KELIPS is simpler,
because there is no strict underlying topology (ring, hypercube, etc.) to be maintained.
Lookup requests are progressively forwarded toward nodes that are closer to the target.
KELIPS has been used to implement a web caching mechanism, namely KACHE [191].

SYMPHONY [198] uses a ring structure mapping nodes onto the key space (like CHORD).
Nodes maintain a link to their successor and predecessor in the ring, and a number of
long distance ring shortcuts. Shortcuts are chosen randomly according to a harmonic
distribution, which results in large jumps in systems with few nodes, and short jumps in
larger systems. The characteristics of the overlay reflect the small world phenomenon [206]
(refer to Section 2.4.1), and its construction is based on the method proposed in [174].

2.3.11 Multi-attribute, range, and semantic queries

Distributed Hash Tables are very efficient in matching lookup queries, by finding the value
univocally associated with a given key. A number of applications nonetheless depend on
range or multi-attribute queries that look up for values that lie in an interval between two
keys or are the union of different attributes. For example, in a distributed database of
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geographical data, typical queries may involve finding all points within a distance of 100m
from a given location. A possible solution to this problem is to divide the interval to be
retrieved into a discrete number of points and initiate a query for each of those points.
This nonetheless involves a trade-off between the efficiency of a search operation and the
granularity of the results.

To support range searches in a Chord-like overlay, CHORD# [255], replaces consistent
hashing with an order-preserving hashing. An order preserving hash function h ensures
that if a < b, then h(a) < h(b); range queries can thus be resolved by first locating nodes
storing the values of a and b in the overlay, and then visiting all nodes between them. A
routing scheme, named SONAR, that adds support for multi-dimensional range queries is
presented in [254]. Other solutions enabling range-queries in CHORD are MAAN (Multi-
Attribute Addressable Network) [60] and [138], which employ a locality sensitive hashing
(LSH) [154] function to map similar data to nearby identifiers with high probability.

The work presented in [24] proposes an extension of CAN that enables efficient range
queries for a grid middleware. The presented approach uses a space filling curve [247]
(namely a Hilbert curve) as hash function: each peer is responsible for a subinterval of the
domain [0, 1], which represents the admissible attribute values that can be stored in the
DHT. A range lookup first locates the zone containing the middle point of the requested
interval, and then propagates the request to close-by zones until all points in the interval
have been found.

As described in [235], prefix hash tries (PHT) can be adapted to address range queries;
this technique has been successfully implemented in P-GRID by means of an order-preserving
hash function to generate content’s keys [90]. Skip graph based structures have also proved
to be a viable solution for both range and multi-dimensional queries: beside the previously
cited SKIPNET [140], examples include SKIPINDEX [308] and Skip TREE GRAPH [132].

MERCURY [39] implements a query routing mechanism that supports multi-attribute
and range requests. Nodes are grouped into hubs that cluster all the data related to a
certain attribute, and queries are routed toward the hubs responsible for their contents.
Furthermore, a ring topology is used to connect nodes within hubs, enabling efficient range
query resolution.

Other solutions that enable range and/or multi-dimensional queries in DHTSs are: [218],
implementing range-queries over the BAMBOO DHT [237], [34], presenting an extension
of PASTRY to supports range queries, [168], extending CHORD with support for range
queries and load balancing, [91], proposing a recursive partition search method, [186],
describing a distributed search scheme supporting both range and multi-attribute queries,
and [192], introducing support for multi-dimensional complex queries by means of R*-trees
[35]. Finally, a comparative analysis of common DHTs with support for multi-attribute
and range search systems is presented in [260].

Semantic queries can be viewed as a natural extension of multi-attribute and range
queries. A notable drawback of the latter is the lack of a notion of semantic similarity,
thus words like car and wvehicle are not considered as related. In [277] two solutions for
semantic-based full-text searches based on CAN are proposed, employing vector space
model (VSM) and latent semantic indexing (LSI). Documents are organized so that re-
lated documents are stored closer in the key space. In the VSM solution, each node is
responsible for storing references to certain keywords, thus a document retrieval operation
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is decomposed into several lookups for each of the search terms. In the LSI solution, the
semantic vector is mapped into coordinates in the CAN space: document retrieval first
locates the corresponding point, and then multicasts the request to (semantically) nearby
nodes. Another solution [59] extends MA AN [60] to support RDF! meta-data storage and
retrieval.

2.4 Unstructured solutions

Unstructured systems are not based on deterministic overlay topologies and do not enforce
precise rules on the placement of data in the overlay. Accordingly, the information shared
by nodes and the logical connections between them are unrelated. To some degree, unstruc-
tured systems are freely connected overlays that mimic social relationships between peers,
and where information retrieval relies on multicast communication. While less efficient
than DHTS, unstructured solutions are simpler to maintain and allow for more complex
queries such as free text search. Because unstructured peer-to-peer topologies are not cre-
ated and maintained by a deterministic process, it is often difficult to understand their
dynamics in order to enable efficient communication and robust operation. Nonetheless,
research has come up with models that replicate the characteristics observed in real-world
complez networks and enable a deeper understanding of their features. Accordingly, before
reviewing existing peer-to-peer solutions, we briefly present common models of complex
networks; an in depth discussion on complex networks characteristics can be found in [87].

2.4.1 Complex network topologies

Unstructured networks are examples of complex networks where there is no apparent struc-
ture. While we refer to unstructured solutions as overlays constructed without relying on a
deterministic algorithm, there exists some degree of control over the desired characteristics
of the resulting topology. Thus, while it might not be possible to recognize regular patterns
in the underlying graph, a coarse classification of unstructured topologies based on main
features is nonetheless possible. The graph’s degree distribution is one of such features,
and it is the principal measure of analysis of complex networks.

Random graphs (Erdés-Rényi) Random networks [265, 105] can be considered as the
simplest example of complex networks [87]. A generative model for constructing random
networks by connecting all pair of nodes with uniform random probability has been in-
troduced by Erdos and Reényi [105]. Random graphs exhibit small diameters [45, 46| (of
logarithmic or polylogarithmic growth), and node degrees following a binomial distribution
[19, 156]. Whereas initial studies on random networks aimed at developing mathematical
models for studying real world phenomenons, it was later proved that most real-word net-
works cannot be satisfactorily represented by the Erdds-Rényi model. The major issues
are related to the different degree distribution and smaller clustering coefficients to what
can be observed in real networks. Research showed that it is nonetheless possible to al-
gorithmically create models matching or approximating real networks degree distributions

"http://www.w3.org/RDF
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[216] by employing different probability distributions [214] or construction models based
on rewiring methods [208].

Small world networks (Watts-Strogatz) The “small-world phenomenon” [31] was
first observed by Stanley Milgram during his social studies in the 1960’s [206]. By means
of a simple experiment, it was shown that people are typically linked by short chains of
acquaintances; that observation gave birth to the myth of “six degrees of separation" [293].
Beside short average path lengths, small world networks are characterized by high connec-
tivity within small group of nodes (high clustering coefficient). In particular, this latter
condition differentiates graphs with small-world properties from other random graphs.
Graph-theoretic analysis of small-world networks led to the development of generative
models [213, 215], such as the popular one proposed by Watts and Strogatz [292], as well
as distributed algorithms to rewire an existing network into one with small-world char-
acteristics [101]. Applications of small-world networks for computer networks have been
analyzed in [174, 175, 249]; in this respect, the problem of navigability of such networks is
of particular interest for routing information using the local information of each node. A
small-world network of N nodes is said to be navigable if a decentralized routing algorithm,
exploiting only local information and information about the target node, enables routing
in a number of steps proportional to log(N) [174].

Scale-free networks (Barabasi-Albert) Scale-free graphs [185] model networks with
power-law degree distribution, where a large number of vertices have small degrees, and
few vertices have very large degrees (hubs). As proposed in [32], scale-free graphs can be
constructed by a random process where links are added between nodes using preferential
attachment: the probability of creating a new connection to a node is proportional to
its current degree. Scale-free networks inherit from random networks the characteristic
of small diameters [80, 79], but the different degree distribution provides a better match
for many examples of real-world networks, e.g the Internet, air traffic routes and airports,
etc. Several research studies have analyzed the robustness of scale-free networks against
random node failures and vulnerability to targeted attacks [20, 135, 85]. It has been shown
that while scale-free graphs are more robust against random faults than random networks
of comparable size, the latter better cope with targeted malicious attacks [47]. This issue
is related to the presence of hubs that, if targeted by an attacker, quickly compromise the
connectivity of the whole network.

2.4.2 Search in unstructured overlays

Search in early peer-to-peer systems such as NAPSTER [9] relied on centralized indexes
that provided the requesting peer with addresses of nodes storing the desired content;
actual transfer of data was carried out by peer-to-peer interaction between nodes. In
contrast to DHTS, in unstructured overlays it is not possible to easily determine which
peer shares the desired information, thus fully distributed search is typically performed
with a flooding protocol [94]. Flooding involves sending the query, which describes the
search parameters such as the name of a file, to some nodes in the overlay (typically the
topological neighbors of the node initiating the request). Recipients locally determine
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if the request can be fulfilled (based on their own content) and eventually respond to
the initiating peer. Otherwise, the query is further forwarded to other nodes. To avoid
forwarding queries for an undefined number of steps, each node can store a reference to
recently processed messages, and avoid retransmission if the same message has already
been received. Moreover, because the size of the network is not known, each message
has an associated lifetime (Time-To-Live, or TTL, Hops-To-Live, or HTL) value which
determines the maximum number of times it can be forwarded. While being simple to
implement, basic flooding has a number of drawbacks. Because of its non-deterministic
nature, flooding cannot guarantee that all nodes that own the queried objects will be
contacted, likewise most of the nodes processing a query will likely not be able to fulfill it.
Beyond that, because of the topology of the network, flooding results in an exponentially
growing amount of messages, which is aggravated by retransmissions that may occur in
topologies with many redundant links [195].

The number of nodes contacted can be limited by employing different traversal and
broadcast policies. Because it is often not necessary to reach all nodes in the overlay
to fulfill a query (the answer might just be found by contacting few close-by peers), it
is worthwhile to avoid forwarding to all neighbors or for an extensive number of hops.
Meanwhile, adaptive overlay networks [181, 124] or hybrid topologies (i.e. super-peers
[302]) can be employed to limit the problem of message retransmission and reduce overhead.

In the following, some existing improvements will be reviewed: in this respect, it is pos-
sible to make a distinction between uninformed (blind, or state-less) methods and informed
(heuristic-based, or state-full) ones [283]. Uniformed methods do not rely on semantic in-
formation and act upon the flooding mechanics (TTL, number of contacted neighbors,
etc.). On the contrary, informed methods make use of heuristics based on semantic infor-
mation about the query to direct the search toward peers that are most likely to provide
an answer. An in-depth review and analysis of search methods for unstructured overlays
can be found in 241, 306, 283|.

Traversal techniques A traversal technique is the algorithm that defines the order in
which nodes are visited during a query operation. Two common algorithms exist: breadth-
first and depth-first. Breadth-first traversal visits nodes at progressively increasing dis-
tance, up to a predefined depth (TTL). In the example network depicted in Figure 2.12, a
breadth-first query initiated at node A with TTL equal to 2, will first be forwarded to nodes
Z,C, E (one hop distance from A), then to P, @, F, S, R, B (two hops distance); nodes N, K
will be omitted because they lay at a three hops distance from A. Depth-first traversal
contacts nodes in one direction at time with backtracking. In the example in Figure 2.13
the visiting order for a depth-first query initiated by A might be Z, F,Q, P,C,E, B, R, S.
Breadth-first traversal can achieve good response time because queries can be easily par-
allelized (nodes at each level can be visited at the same time), but is prone to generating
more traffic [196]. Conversely, depth-first search is more efficient but can result in longer
delays [167].

Iterative deepening If the requested information has a high probability of being found
near the requesting node, flooding with increasing depth, also known as iterative deepen-
ing, can significantly reduce the overall traffic [195]. Queries are first broadcasted with
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@ Starting node ® Visited node ¢ Node being visited

a) Breadth-first traversal from A, remaining TTL=2 b) First forwarding, remaining TTL=1 c) Last forwarding, remaining TTL=0

Figure 2.12: Example breadth-first traversal in an unstructured topology, with Time-To-
Live equal to 2.

e Starting node ® Visited node -‘ 3 Node being visited

a) Depth-first traversal from A, TTL=2 b) First forwarding, remaining TTL=1 ¢) Second forwarding, remaining TTL=0

d) Backtrack to Z (TTL=1), e) Backtrack to Z (TTL=1), f) Backtrack to A (TTL=2),
forward to Q (TTL=0) forward to Q (TTL=0) forward to C (TTL=1)

Figure 2.13: Example depth-first traversal in an unstructured topology, with Time-To-Live
equal to 2. Last steps omitted for simplicity.

small TTL values, using a breadth-first approach; the TTL value is progressively increased
until either a result is found, or an upper limit is attained. A more advanced solution
that dynamically adapts the TTL according to the popularity of the searched content is
presented in [162].

Random walks In contrast to basic flooding, random walk [195, 127, 199, 239| forwards
the query to just one neighbor at time. The query randomly walks on the overlay un-
til the target information is found, a pre-determined maximum number of hops has been
reached, or the information has been found by some other walk. In the latter case, peers
have to contact the originating node and check if the query still needs to be forwarded
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or not [195]. While this approach significantly reduces the amount of traffic produced by
search messages, the response time increases because the probability of obtaining results
within an acceptable number of hops is reduced [129]. An improvement of this technique
involves starting k& multiple concurrent random walks [195] (k random walkers) in order
to increase the probability of hitting a target. In [41, 42], random walk parameters are
adapted according to the popularity of the searched content. Furthermore, random walks
can be combined with shallow flooding (i.e. flooding with small TTL) to provide informa-
tion about nearby nodes [16, 205, 128], hence both increasing the probability of success
and reducing response time. Finally, [310] studies the convergence of random walking in
different types of networks and with different random neighbor selection distributions. An
example of random walk and k-random walk is depicted in Figure 2.14 a), respectively b):
in each step, each walker is forwarded to a random neighbor.

a) Random walk with TTL=4 b) k-Random walk with k=2 and TTL=4

Figure 2.14: Example random walk (a) and k- random walk (b) in an unstructured topol-
ogy, with Time-To-Live equal to 4 and k=2.

Teeming Flooding protocols visit a large number of nodes at each forwarding step be-
cause all neighbors of the current node are contacted. If the queried object is very popular
across the network, forwarding the query to just a smaller number of neighbors still has a
high probability of retrieving it. On this basis, probabilistic flooding protocols (or teeming)
[167, 94] forward the query only to a random subset of all available neighbors on each node,
namely they forward to each neighbor according to a fixed probability. A further improve-
ment of this technique, called teeming with decay [184], involves reducing this probability
as the number of hops increases. While teeming also results in an exponential growth of
the traffic as the query travels deeper in the network, the growth is slower than in pure
flooding.

Selective forwarding Teeming reduces the amount of traffic by limiting the number of
visited neighbors, regardless of the fact that ignored peers might be able to fulfill the query.
If some information about neighbor nodes is known a priori, the forwarding algorithm
might be able to choose which peer is best suited to send the query to: this technique
is known as selective forwarding or guided search. In [16, 290] queries are routed toward
nodes with higher degrees. Similarly, in [219] nodes probe their neighbors before forwarding
the query, in order to find the one with the shortest round-trip time. In [83], the authors
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present a search mechanism that uses compound routing indices to select the best query
routing path. Such indices define the goodness (i.e. probability of finding a matching
document) of each outgoing path concerning a given topic, and are periodically updated by
aggregating information about shared documents on nodes in each path. Following a similar
principle, other solutions [153, 224] employ Bloom filters [56] to determine which forwarding
path is more likely to lead to the queried object. Another approach [284| determines the
desirability of a neighbor based on previous interaction: if forwarding to a given neighbor
results in a success its goodness is increased, otherwise decreased. The appealingness of a
neighbor can also be computed by combining several metrics, such as the communication
cost, the node’s degree, or the amount of shared information [313, 268, 298, 163].

Replication All aforementioned search techniques involve a trade-off between the prob-
ability of fulfilling a query and the resulting network traffic. In this context, replication
plays an important role in improving the effectiveness and efficiency of search methods.
Whereas in file sharing networks content might be naturally replicated by the interaction
between peers (for example, a popular song downloaded and then shared by a large number
of users), in other peer-to-peer systems an active replication mechanism might be needed.
We note that replication can either involve a full replica of an object, or just a reference
to the node storing that object. The simplest replication strategy is one-hop replication,
where each node knows its neighbors’ identities or shared resources, and can thus reply to
queries on their behalf. Several replica allocation strategies have been thoroughly analyzed
in [78]: uniform, proportional to the number of requests (which has been further analyzed
in [278, 279]), and proportional to the square-root of the query rate. While the first two
lead to comparable results, the latter yields optimal performance. An evaluation of dis-
tributed replication algorithms that converge to square-root allocation has been conducted
in [78], and on different network topologies in [195]. In the latter, two easily implemented
replication methods are also proposed: owner replication, where upon a successful search
the object is replicated on the requesting node, and path replication, where the object is
replicated on all nodes along the path between the providing and the requesting node.
The benefits of replication in random-walk protocols are also illustrated in [242]. Other
replication strategies are discussed in [280], where a replication strategy based on the pop-
ularity of the content and employing an optimal replica placement mechanism is proposed.
It is important to note that replication can also be beneficial to structured peer-to-peer
systems, as shown in [229, 233].

Topology optimization The topology of the network has great influence on the effi-
ciency of a search protocol [70, 111]. Even without introducing structure into the network,
it is possible to optimize the overlay in order to support efficient forwarding. In this con-
text, several studies [181, 288, 139, 124] have proposed solutions for efficient multicasting,
called topology-aware or proximity-aware, that adapt the overlay at runtime to match the
underlying topology. These solutions minimize both retransmissions at the network level
and delays. Other solutions employ super-peers [302] to reduce flooding traffic by creating
a two-level overlay where a small number of high-capacity peers are elected to cache infor-
mation and route queries for a large number of normal peers. A proximity-aware overlay
based on super-peers has been presented in [161].
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Other improvements Beside the aforesaid methods, there exist other techniques to
improve the efficiency of search in unstructured networks. With non-forwarding search
schemes [303, 188] each peer maintains a local cache with a number of addresses of other
peers. To maintain this cache, each peer periodically selects an entry and sends to the
corresponding node some of the addresses in the cache, similarly to the operation of a gossip
protocol. When a search query is initiated on a peer, each node in its cache is iteratively
probed for a result; when a peer is probed it returns a sample of its cache, providing new
entries in the cache of the probing peer. Because search is managed locally by one peer,
the generated traffic can be accurately limited and does not result in exponential growth
as with flooding.

In [84], the authors propose to exploit the semantics associated with contents shared
by each node to construct different overlay networks for each possible topic. Nodes may
join several overlays, and queries can be efficiently resolved by forwarding them to the
appropriate overlay. A similar approach based on the creation of semantic groups is dis-
cussed in [77]. In [73] a self-organized solution that extends the topology of the overlay
according to the results of previous searches, hence promoting the emergence of strongly
connected semantic communities, is presented. A number of outgoing links on each peer
point toward nodes that are more likely to share common interests, thus providing paths
to quickly resolve future queries. Other approaches [114, 291] cluster semantically similar
information in order to increase the recall rate once a result for the query is found. As
with other resource discovery improvement techniques, clustering can also be applied to
structured overlays, as in {147, 113].

The bio-inspired solution proposed in [204] uses pheromone trails that are laid on the
overlay and are linked to search topics. Queries are routed on the overlay following the
path with the highest pheromone concentration; depending on the success of the query,
the concentration on a path may be further reinforced, or not. Similar bio-inspired routing
mechanisms are presented in [296, 108|.

In the following we review some popular unstructured systems, and highlight their
functional design.

2.4.3 GNUTELLA

The GNUTELLA protocol [3, 238], was quickly developed after the demise of the NAPSTER
[9], to create a replacement for the popular file-sharing network. NAPSTER was the first
successful deployment of a hybrid peer-to-peer file sharing system that relied on a cen-
tralized indexing server and decentralized content provisioning. Legal issues led to the
shutdown of NAPSTER servers in 2001 [133], rendering the network unoperable. In order
to overcome the weakness of the latter, GNUTELLA proposed a fully decentralized search
protocol based on flooding that removed the need for a centralized indexing service thus
overcoming the risk of further shutdowns. Later versions of GNUTELLA implemented a
superpeer infastructure, in order to reduce the overhead of flooding. In the following, we
review both basic GNUTELLA protocol [4], as well as improved developments such as [5]
and [69].



34 Chapter 2. Peer-to-Peer Systems

Message routing GNUTELLA employs just five types of messages: Ping, Pong, Push (to
request the transmission of a file), Query (to search for a file), and QueryHit (to successfully
respond to a Query). Pong and QueryHit messages are sent in reply to Ping, respectively
Query messages. All messages exchanged by GNUTELLA peers are additionally labeled
with a unique identifier and contain a TTL value to limit the number of times they can be
forwarded. This identifer helps detecting and avoiding possible message retransmissions,
as well as enabling routing of responses. Concerning routing, the protocol requires all
response messages to be sent along the same path followed by the request; hence, peers
maintain a routing table that stores the identifiers of the received packets, their source peer,
and their destination peer if they have been forwarded. If a node receives an unexpected
reply message (Pong, QueryHit, or Push) it will not further forward it.

Joining and leaving Peers can join the GNUTELLA network by connecting to a node
already in the network. A cache server supports the bootstrap process by providing a list
of peers. The node requests the connection and if accepted becomes part of the network.
Each node periodically sends a Ping message to each neighbor: upon receiving a Ping, a
node replies with a Pong message that contains its address to notify its presence, and then
forwards the Ping on the network (up to a predefined distance). Pong replies are routed
back along the same path that carried the corresponding Ping. With Pong messages nodes
can thus discover new peers and create new connections.

Cache Server (®Pong (W)

Figure 2.15: Joining and Leaving the Gnutella network.

An example of the process of joining the network is illustrated in Figure 2.15. Node
W first requests a list of peers from the bootstrap cache server (steps 1 and 2); W then
tries to connect to a random node from the list (3), A in our example. The connection is
accepted (4), and W becomes part of the overlay. At some point, N pings its neighbors
(5): each node receiving the Ping message replies with a Pong that is routed back to NV,
which finally discovers W (6).

Search GNUTELLA 0.4 uses a breadth-first flooding protocol to forward its requests on
the overlay encapsulated in a Query message. Nodes that share a file matching the request
can reply with a QueryHit message. To request a file transfer, the requesting node replies
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to the QueryHit with a Push message. Actual transfer of the file is achieved using the
HTTP protocol.

Since protocol version 0.6 [5], GNUTELLA employs a super-peer approach, by grouping
peers into leafs and ultrapeers. Each leaf peer is connected to several ultrapeers, to which
it sends its shared keywords, whereas ultrapeers are connected together. The superpeer
design reduces traffic and the number of hops traveled by each query, improving response
time. The GNUTELLA2 protocol [6] (a fork of protocol version 0.6 that employs random-
walk instead of flooding) is also based on superpeers.

Further research The GNUTELLA protocol has been the subject of several studies aimed
at understanding the dynamics of peer-to-peer interaction, as well as at providing adjuste-
ments to increase the effectiveness and efficiency. In depth analysis of GNUTELLA networks
are the focus of [238, 15, 270]; moreover [305, 26, 212] give insights about the security of
GNUTELLA: in particular, concerns such as Denial Of Service (DOS) attacks and malicious
content spreading are analyzed, and solutions are discussed.

Improvements of GNUTELLA have been considered by G1A [69], which tackles the prob-
lem of search efficiency, and proposes to incorporate a number of techniques to ameliorate
the scalability of the system. More specifically, GiaA employs biased random walks that
steer queries toward nodes with higher degree, one-hop replication, topology adaptation
to ensure that only high-capacity nodes have high-degrees, and traffic control to adapt
the network load to the capacity of each node. GiA developers prove that the proposed
solution enhances the overall operation of the system by significantly reducing the traffic,
while retaining the simplicity and flexibility of GNUTELLA.

2.4.4 FREENET

The FREENET project [75] aims at creating a distributed document storage on an un-
structured overlay with small-world characteristics. The network operates on the principle
of a darknet [40], and enables participants to store and retrieve document anonymously.
FREENET exploits the fact that small-world networks are navigable [249] to ensure the
convergence of the employed greedy routing protocol.

Message routing Nodes and shared objects are univocally identified using hash keys.
Nodes’ keys are randomly generated, whereas objects’ keys are an hash of their contents.
FREENET uses key-based routing to insert or retrieve content. With the help of a routing
table maintained by each peer, object queries are routed toward the node with the closest
matching identifier. The routing table is updated when receiving query replies. As the size
of the table is limited, a Least-Recently-Used algorithm is employed to cleanup old entries;
an enhanced entry replacement algorithm has been proposed in [308].

Joining and leaving Nodes join the overlay by contacting some nodes in the overlay;
the latter add the newcomer’s identifier in their routing tables. With time, the node
will hopefully receive requests to publish files and reply to queries that closely match its
identifier.
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Search To search for a file, the requesting node computes the key of the file and sends it
to itself. Each query has an associated expiration time (TTL): if the query is not answered
within its TTL, it is considered as failed. Upon reception of a query, a peer checks in the
local storage to determine if it owns the requested object. If the file is not found in the
local storage, the query is forwarded to the node in the routing table associated to the key
closest to the requested one. If a node that has already been contacted is reached, the
request is returned to the previous node, which then tries to contact the peer associated
with the next closest key in the routing table. When a peer sharing the requested file is
found, a success message is sent back along the path traveled by the query until starting
node. Each node traversed by the reply updates its routing table and stores a copy of the
file.

To publish a new object, the request is routed similarly as if the object is being queried:
each traversed node checks against collisions (existing objects with the same identifier). If
no collisions are detected, the object is published on each node along the path.

@ Starting node
A~ Success
#7. Failure

X Query

Figure 2.16: FREENET query routing.

Figure 2.16 depicts an example of messages exchanged during search in a FREENET
overlay, numbers indicate steps in the process. We suppose that a user request for an
object with key T". The request is handled over to node A, which forwards it to the closest
known matching node, E. The query fails, and F forwards it to its closest matching node,
Y, failing again to locate the object. The node then forwards if to the second-closest node,
but this subsequently results in the query returning to F. The query is finally forwarded
to F, and finally to T' (where the requested object is found). The reply is forwarded back
to A on the same path as the query.

Further research A change of the routing protocol to improve its efficiency has been
proposed in [74]: the idea is to exploit information about response times, time to estabilish
a connection, and success rate, to select the best path to forward a query to. While
the latter indeed results in better routing performance [249], the proposal for such a new
protocol was subsequently withdrawn in favor of a simpler approach in FREENET 0.7.
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2.4.5 KAZAA/FASTTRACK

FASTTRACK [7] is a proprietary file-sharing protocol based on a super-peer architecture, and
employed by the popular KAzZAA client [8]. Due to the closed and encrypted nature of the
protocol, precise information is relatively scarce; nonetheless, reverse engineering through
traffic sniffing and analysis [182, 189] enabled a better understanding of the communication
between ordinary peers and superpeers and the development of opensource clients [2]. In
particular, our review is based on the information provided in [189].

Joining and leaving At startup, ordinary nodes probe the connection with several
candidate superpeers and retain the best suited one. It is assumed that FASTTRACK
takes locality and workload into account, by having ordinary peers preferably connected
to closeby superpeers whose workload is low. The workload of a superpeer is related to the
number of connections it maintains with ordinary peers; selection of the parent superpeer
is based on this measure and provides a load balancing effect. After the initial connection,
a peer receives list of additional superpeers that are cached for later use.

FASTTRACK promotes ordinary peers to super-peers when higher performance and
connectivity than globally defined thresholds are detected; superpeers maintain connections
with each others and form the backbone of the system.

Search Superpeers index the content shared by normal peers: each object is identified
by its hash. To search for a file, an ordinary peer sends the query to the superpeer to
which it is connected. After the latter replies, the peer connects to other superpeers to
gather additional results, and remains connected to the last contacted superpeer. On
superpeers, queries are resolved by consulting the local index and by eventually contacting
other superpeers: the traffic analysis in [189] reveals that superpeers do not exchange their
indices.

2.4.6 SAXONS

SAXONS [262, 263] maintains an overlay with low latency, high bandwidth paths, as well as
small distances. The overlay provides efficient multicast communication across the overlay
that can be exploited to deliver higher level services. In addition to overlay neighbors,
each node maintains a dynamically changing set of peers’ addresses, a number of which
is periodically sent to neighbors; the identifier of the node sending the information might
be within the transmitted list, allowing the node to spread its identity across the overlay.
Nodes periodically measure the latency and bandwidth of known nodes, and add them
as active neighbors (possibly replacing existing ones) according to the desired structure
quality and the maximum allowed node degree.

It is important to stress the fact that SAXONS does not implement any specific querying
mechanism, but leaves the choice to applications implemented on top of it. Nonetheless, the
authors experimented with a Gnutella-like flooding protocol and obtained reduced latency
and increased bandwidth compared to a random overlay built on the same underlying
network.
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Joining and leaving A node connects to the overlay by acquiring a random list of nodes
from the local set of an existing (bootstrap) node, and subsequently trying to establish
connections with peers in such list. The node then starts periodic exchanges of its local
set with other peers, in order to gain knowledge about the network.

2.4.7 UMM

UMM [239, 240] (which stands for Unstructured Multi-source Multicast) uses a self-organized
adaptation mechanism to optimize an unstructured overlay with the goal of improving
bandwidth and reducing communication latency in multi-source multicast communication.
UMM uses a two layer architecture separating the tasks of maintaining a base overlay and
of disseminating the information in an efficient way. Connections in the base overlay are
arranged both to reduce latency and to increase available bandwidth, similarly to SAXONS.

UMM constructs and maintains efficient multicast distribution paths by detecting and
avoiding duplicate traffic. The system monitors incoming traffic and checks for duplicate
messages; if duplication is detected, the source of the message is informed not to forward
further messages through the same path (called tunnel). The connection between two
nodes is not permanently removed, but temporarly filtered; to prevent partitioning of the
overlay in the event of a crash, filters are reset when failures are detected.

Figure 2.17 illustrates the duplicate message detection: in the first step (a), A multicasts
its message to its neighbor F, with a latency of 70ms. The message is further transmitted
from F to S and B with a latency of 40ms, respectively 210ms (b). In the last step (c),
S forwards the message to B; the latter will finally receive the message from both S and
E: detecting the duplication, B will ask E to filter the tunnel (E to B), thus avoid using
it for forwarding messages from A.
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Figure 2.17: UMM duplicate message detection.

Joining and leaving When a node connects, it gathers the addresses of a number of
peers by contacting a node in the overlay. These addresses define the initial neighbors
for the base overlay. Information is further exchanged with other nodes by means of an
epidemic protocol. Periodically, an optimization process measures the link quality for a
random subset of known nodes, in order to determine tunnels optimized for latency and
tunnels optimized for bandwidth.
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2.4.8 PHENIX

PHENIX [10] constructs a low-diameter overlay with power-law degree distribution with
the goal of offering faster query response time. Furthermore, the identity of high-degree
nodes is hidden, to prevent malicious users from attacking them, and increase resiliency.

Joining and leaving A node n; wanting to connect to the PHENIX overlay requests
a list of addresses of peers in the overlay from a cache server. The list is divided into
two subsets, Grandom and G friends- The node n; then sends a ping message to all peers in
G friends: upon receiving the ping, peers reply with a pong message that contains the list of
their own neighbors. The ping message is then forwarded one more step into the network:
nodes receiving it, add n; to a temporary list I'. All neighbors of nodes in G fyjengs are
inserted into a Gegndidates 118t, which is sorted according to the frequency of appearance.
The topmost nodes are thus the nodes that are most known in the network, and are used to
create the G e ferreq list. The final neighbors of n; are the union of Gygndom and Gpre ferred;
subsequently, for each neighbor node in G cferred, mi tries to establish a connection: if
accepted, the identifier of the node is moved to the Gpigniypreferrea list, respectively n; is
added to Gpackwarqa 0N the accepting node. A node may refuse a connection because the
maximum number of neighbors has already been reached.

Thanks to the neighbor selection process, nodes that have a high-degree will preferably
chosen as neighbors by incoming nodes. Random neighbors are nonetheless kept to improve
resiliency.

Resilience to attacks PHENIX employs different mechanisms to protect the network
from targeted attacks. On one side, the system attempts to hide the identity of high-
degree nodes; on the other side, a node maintenance procedure recovers the network in the
event of an attack. To conceal high-degree nodes, recurrent ping messages or malformed
pings (for example, with TTL greater than 1) are silently dropped by the system. Further-
more, the Gpeckward list is never disclosed in the list sent in response to a ping message,
thus preventing nodes from gaining knowledge of the popularity of the node. The node
maintenance procedure is used to probe for peers that may have left the system, and create
new random or preferred connections.

2.4.9 NEWSCAST

NEWSCAST [159] employs a simple epidemic protocol that results in the emergence of a
small-world network. The topology is determined by the list of addresses maintained by
each peer, which is periodically exchanged with other peers. Beside a small diameter
and a high clustering coefficient, NEWSCAST overlays exhibit resilient behavior in failure
situations, even when a large portion of the peers simultaneously disconnect.

Cache merge Fach node maintains a cache containing the identifiers and addresses
of n other peers in the overlay. Fach cache entry is associated with a timestamp that
determines the age of the entry. Information contained in the cache is shared with other
peers by means of an epidemic protocol [158]. Periodically, a node selects a random entry in
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its cache, contacts the corresponding peer and initiates a cache merging operation. Cache
merging consists in copying the contents of the two peers’ cache and retaining at most the
n — 1 newest entries according to their timestamp. These entries constitute the new cache
for both peers partecipating in the merge. To complete the merge, peers add an entry
corresponding to each other in the cache with updated timestamps. The merge operation
enables nodes to create new contacts, flushes old entries, while retaining a resilient and
connected overlay.

A Cache Merged Cache A Cache
id | timestamp id | timestamp id | timestamp
S 45 K 7 K 7
P 53 P 53 P 53
Q 39 S 45 R 44
R 44 R 44 S 90
S Cache Q 39 S Cache
id | timestamp X 37 id | timestamp
X 37 D 33 K 77
K 7 C 15 P 53
S) ;Z Figure 2.19: Merging PA{ 33
Figure 2.18: Before merge Figure 2.20: After

Figure 2.21: NEWSCAST cache merging operation.

Figures 2.18, 2.19, 2.20 illustrate the merging operation initiated by node A at time 90.
Node S is selected as candidate for the merge, the contents of A and S cache are unified,
and the most recent entries are retained. Node A is inserted in the resulting cache of S,
whereas node S appears in A’s cache.

Further research Epidemic membership management protocols have been also used in
other systems, such as CycLON [285] and T-MAN [157]. In particular, T-MAN replaces
the random entry selection employed during cache merges with a deterministic choice
based on a ranking function; accordingly, a control on resulting graph can be asserted to
produce sorted or clustered topologies. Moreover, a semantic based overlay built on top of
a CYCLON overlay is presented [287]. A general overview of gossip protocols for distributed
systems can be found in [173].

2.4.10 Other approaches

As with structured overlays, beside the ones reviewed in the previous sections, a number
of other unstructured designs exists. Among the interesting solutions, [311] presents a
Gnutella-like system that employs topology adaptation to organize peers into semantic
groups, whereas [252] proposes the construction of a Gnutella-like overlay that optimizes
flooding by reducing the number of small cycles. In [65] the authors introduce a hybrid
solution that employs unstructured search methods (flooding and random walks) on top
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of a structured overlay (PASTRY): in contrast to a random overlay, a structured solution
avoids redundancy and enables finer control of the nodes visited by a query.

2.5 Peer-to-Peer churn

Peer-to-peer networks are dynamic systems where peers continuously join and leave. Each
peer remains connected to the system for some amount of time, defined as session [271].
Churn is determined by the dynamics of peer activity, namely the frequency of joins and
leaves and the length of peer sessions. Understanding churn and its effect on the reliability
of a network is essential for the deployment of robust and predictable large scale systems.

Research on churn in peer-to-peer networks has focused on analyzing this effect in real-
world structured networks [29, 130, 248, 271], as well as in unstructured ones [304, 183, 38|.
Several studies have highlighted the difficulty of precisely measuring the dynamics of a
live system. Some of the achievements concern the development of statistical models to
describe or predict the behavior of distributed systems under churn. In [248], the authors
provide an analytical study of CHORD’s performance and validate their result by means
of simulations. Comparative analysis of different DHTs in [160, 236] highlight the cost of
maintaining proper operation under churn and the negative effects of short session times.
In particular, heavy churn results in either failed lookups requests (PASTRY) or increased
latency (CHORD).

The resilience of a peer-to-peer system relies in its ability to cope with churn. In
[136] three aspects of resilience to churn are identified: data replication, routing recov-
ery, and static resilience. Routing recovery strategies can either be reactive or periodic
[236]: whereas reactive recovery takes places only when a failure has been detected, peri-
odic recovery involves a continuous exchange of information between nodes, regardless of
the detected changes in the network. While consuming less bandwidth under low churn,
reactive recovery becomes more expensive as the dynamics of the network increase, and
can create positive feedback cycles if the network becomes congested. In particular, con-
gestion may lead a node to think that a neighbor has failed, and the subsequent recovery
can worsen the situation by increasing the traffic. To solve this problem, the use of a
periodic recovery strategy combined with a more conservative reactive recovery has been
suggested [236]. Static resilience refers to the ability of the network to avoid failure or
partitioning even before recovery actions take place, for example using redundant links in
an unstructured network.

It is often argued that unstructured solutions are more robust toward the effects of
heavy churn; the results presented in [66] reveal that it is nonetheless possible to cre-
ate resilient structured solutions. However, the proposed concepts further complicate the
maintenance of structured solutions; moreover the search efficiency of the latter might be
counterbalanced by real-world churn rates [250, 38| which induce high recovery costs.

2.6 Peer-to-peer for Grid Resource Discovery

Grids are distributed systems that support resource sharing and collaboration, and operate
on well-defined infrastructures, which provide services for resource discovery, resource man-
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agement, monitoring, and security [116]. Resource discovery is the process of determining
which grid resource is the best candidate to complete a job [257]. The discovery operation
has to complete in the shortest amount of time, with an efficient use of resources, and at
minimum cost [257]. In this respect, resource discovery is typically achieved by means of
centralized or hierarchical information systems, although proposals for fully decentralized
approaches based on the peer-to-peer paradigm exist [152, 144, 282].

Grid versus Peer-to-Peer In order to understand how peer-to-peer technologies could
harness the deployment of future grids, a brief review of the common traits and differences
between the two concepts is required. The analysis conducted in [282] highlights several
points of distinction, in terms of shared resources, target users, infrastructure, scale, secu-
rity, and applications. Whereas grids are characterized by a moderate number of trusted
entities, peer-to-peer communities consist of a multitude of untrusted systems that are less
concerned with quality of service policies and reliable service provisioning [116]. These
differences also reflect the interests put in the development and operation of such systems:
grids are supported by large investments and common effort from the involved parties,
meanwhile peer-to-peer systems are loosely coupled platforms with little incentives for
cooperation.

Concerning resources and applications, peer-to-peer systems have mostly emerged as
file-sharing platforms, whereas grids typically target large scientific computing tasks. In
this regard, systems participating into a grid are more powerful, persistent, and better
connected than those in a peer-to-peer network, and they are managed through stricter
user and access policies which contribute to a more robust and reliable operation. Partly
because of larger scales, loose dependency between resources, and non-criticality of the
deployed applications, peer-to-peer systems have better fault-resilience than grids. This
difference is aggravated by the fact that traditional grid systems rely on centralized or
hierarchical management [178, 86|, which determine weak points. Peer-to-peer systems
also exhibit a higher degree of participation dynamism, with shorter session times and
frequent connections and disconnections, while maintaining a relatively stable set of shared
resources. In contrast, hosts connected to grids are relatively stable, but the availability
of shared resources greatly varies over time [275].

Convergence of grid and P2P Convergence of grid and peer-to-peer has been deemed
beneficial for both platforms [282]. As grid systems scale up and integrate a large number of
commodity hardware, the boundaries that separate them from peer-to-peer networks dis-
appear; according to this vision, future grids will see centralized management replaced by
fully distributed solutions, seeking to increase reliability and to avoid bottlenecks. Mean-
while, such next-generation grids, composed of a large number of nodes, will need to relax
partecipation requirements concerning trust and security, and assume the flexible and self-
organized behaviors required to minimize management costs. The experience acquired
with peer-to-peer systems is continuosly being transferred to grids. Accordingly, we have
witnessed the arousal of peer-to-peer solutions for distributed resource discovery, schedul-
ing, and storage. Nonetheless, implementing peer-to-peer information systems necessitates
a choice between structured and unstructured overlays, which is tied to the goals and re-
quirements of the intended deployment scenario. Whereas structured overlays enable very
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efficient keyword search, unstructured ones allow for complex queries and typically require
less effort to manage the overlay. In the following, we review the requirements set by our
evaluation scenario of a grid, and highlight the directions and design choices that could
benefit the project.

2.6.1 Peer-to-Peer Grid information systems

In this section we review some of the existing grid information systems based on peer-to-
peer technologies. In-depth review and comparison of different models and solutions can
be found in [231, 282, 201, 202].

Structured Systems As shown in the previous section, structured solutions enable
efficient and deterministic information retrieval. Unfortunately, grid resource discovery
cannot easily benefit from these systems, as queries cannot be mapped to simple hashed
keys. More specifically, in contrast to file indexing (typical of peer-to-peer file sharing),
querying grid resources depends on the use of complex queries composed of multiple at-
tributes whose values are often numerical ranges rather than precise values. As discussed
in the preceding sections, several DHTs support range request, and solutions targeting
grids have been developed. As an example, in [141], the authors propose to use a P-GRID
overlay to implement a decentralized information system; in a similar way, [60] implements
a resource discovery service on a CAN overlay. To support multi-attribute requests (Sec-
tion 2.3.11) the combination of different independent overlays, each indexing a different
attribute [24, 218, 39|, has been proposed. Moreover, some examples of DHT with support
for multidimensional range queries within a single overlay exist [186, 258, 281, 273, 260],
but come at the expense of additional complexity in managing the network.

The system presented in [275] implements a grid information system that employs
different techniques to support multi-attribute queries. A Chord-like ring that uses con-
sistent hashing provides support for range-queries; several rings are deployed to support
multiple attributes. Furthermore, flooding is used to resolve arbitrary queries, and queries
concerning dynamic resources. In contrast, XENOSEARCH [266] models resources in a
multi-dimensional space that is distributed across the nodes. Using a PASTRY overlay,
queries are directed toward the nodes serving the required partition of the space. A similar
solution proposed in [33| divides the attribute space among nodes using a tree structure.

Unstructured systems Unstructured systems do not limit the complexity of queries,
as each request is resolved locally on each node. In this regard, unstructured P2P networks
are better suited for integration with existing grid middlewares, because the latter may
store information using an arbitrary format rather than a fixed schema [71]. In [200], the
authors propose a super-peer system matching the physical organization of nodes. Each
super-peer is responsible for indexing resources shared within its administrative domain,
for communicating with super-peers of other domains, as well as for managing resource
discovery requests from ordinary nodes. This research also highlights the need for strate-
gies to improve the efficiency of resource discovery. In the same direction, research in
[151] discusses the implementation of an unstructured peer-to-peer information system
and analyzes different query forwarding strategies.
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Common issues Both structured and unstructured systems have to deal with common
issues, such as decreased performance compared to centralized indexes (longer response
times), and security concerns [71|. Regarding the latter, several propositions have been
made to address the problem, such as [92, 102]. These drawbacks are nonetheless balanced
by the increased robustness and fault tolerance of the system.

2.7 Summary

This chapter presented an overview of the current state of the art in peer-to-peer systems.
The fundamental principles of structured and unstructured solutions have been detailed,
and noteworthy examples of both classes of peer-to-peer infrastructures have been dis-
cussed. Moreover, in relation to the considered evaluation scenario of a grid, important
aspects and issues related to robustness under churn and application in grid environments
have been analyzed.

Although structured systems exhibit deterministic search performance that enables
efficient key based lookups, solutions that support multi-dimensional and multi-attribute
queries are more complex and might still not be enough to support rich queries that are
typical in some scenarios such as grids. Moreover, a complete analysis of the behavior and
robustness of such systems under high churn is rather scarce. On the contrary, unstructured
systems build on simpler designs and enable real full-text queries,

The knowledge acquired leads us to a better understanding of the benefits and limits
of currently available solutions, hence providing a solid base for innovation.
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BLATANT indicates a family of novel overlay management algorithms built around a
common set of rules that focus on optimizing logical connections between nodes in or-
der to reduce traffic generated by resource discovery queries broadcasted on the network.
Furthermore, the BLATANT algorithms provide fault-tolerant and fault resilient behavior
to prevent partitioning of the overlay and ensure reliable operation even in the case of
unexpected failures.

3.1 Requirements and goals

An overlay management algorithm for the considered grid scenario must fulfill several
requirements in order to provide a robust communication infrastructure that enables the
development and deployment of high-level services, such as resource discovery and task
scheduling. Accordingly, in the following we review the desired features, and highlight the
corresponding research directions.

Fault tolerant and fault resilient operation The proposed solution should be able
to cope with transient unexpected communication errors or node faults, without incurring
a complete breakdown of the overlay but gracefully degrading its performance. Moreover,
detected failures in the overlay connectivity must be recovered in order to ensure minimal
negative impact on the operation of the system. In this regard, with fault tolerant opera-
tion we intend the ability of overcoming communication problems that lead to loss of the
information being transferred between nodes; conversely, a resilient behavior is required to
react to problems such as node crashes and ensure that the overlay remains connected.

Support for arbitrarily complex queries The overlay must be as generic as possible,
in order to support different deployment scenarios other than the grid one chosen for
evaluation. Hence, the overlay should not make any assumption neither on the type of
resources shared by nodes, nor on the querying mechanism or the complexity of the queries.

Avoidance of weak spots In the review presented in the previous chapter, hubs were
identified as weak point in power-law topologies. In this regard, the considered approach
should avoid creating scale free topologies, and aim at almost uniform node degree distri-
bution.

Support for efficient communication Search in a peer-to-peer overlay may incur large
traffic overheads. For this reason, the topology should be optimized to avoid redundant
connections and unnecessary links between nodes. Additionally, to avoid long response
times, the maximum distance between any pair of nodes in the overlay must be small.

Self-organized and adaptive behavior In order to reduce management complexity,
the overlay must be able to autonomously adapt to changes in the conditions of the network,
such as the addition of new nodes and the removal of existing ones, in order to continuously
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meet the aforementioned requirements. It is nonetheless desirable that stable network
conditions, without any node joining or leaving the overlay, result in a stable overlay,
hence a trade-off between adaptiveness and stability must be found.

Simple, fully distributed design The overlay management algorithm must not de-
pend on centralized control. Nodes should cooperate in a fully distributed asynchronous
way, without global information. Furthermore, the complexity of the algorithm must be
low, to avoid unwanted processing overhead on the nodes.

As highlighted in the review of peer-to-peer systems in Chapter 2, structured solutions
generally link the overlay structure to data, and typically do not allow for efficient resolu-
tion of arbitrarily complex queries. Accordingly, in our work and for our requirements an
unstructured solution is preferable. Meanwhile, we strive to optimize the overlay so as to
ensure efficient communication; under these premises, BLATANT goals are twofold: on one
side, it aims at constructing and maintaining an overlay with bounded diameter, in order
to limit the maximum delay to reach any node. On the other side, the algorithm also min-
imizes the number of redundant connections, by breaking up cycles that are shorter than
a user-defined threshold. To meet the aforementioned requirements for fault tolerant, self-
organized and adaptive operation, we propose to use bio-inspired techniques; in particular,
some parts of the algorithms have taken inspiration from the behavior of ant colonies, a
paradigm which has led to the successful deployment of solutions for other network related
problems [62].

3.2 Basic algorithm

The optimization process implemented by BLATANT bounds the diameter and the girth
of the overlay by creating and removing logical links between nodes. More specifically, we
alm at transforming an existing overlay, represented by an undirected graph G, so that
for a,b € N*, the diameter dg in the resulting graph satisfies dg < b, and the girth gg is
a < gg. The upper bound on the diameter ensures that nodes are reachable within a known
number of hops in the overlay, thus the query forwarding can be limited without leaving
a large part of the network unvisited. Conversely, the lower bound on the girth prevents
small cycles, and reduces the probability that a query will be forwarded to the same node
multiple times through different paths. The underlying process executed by the algorithm
thus consists in rewiring the network by creating and removing logical connections between
nodes. In order to ensure a stable and convergent behavior, the rewiring algorithm must
terminate when a graph fulfilling the aforementioned conditions is obtained.

The optimization problem faced by BLATANT is similar to the degree-girth problem
[106], which is concerned with finding topologies with the smallest possible number of
vertices given degree and girth. This issue is related to the degree-diameter problem
[207, 22], which aims at determining the largest graphs of given maximum degree and
given diameter. Although our research focuses on resembling goals, a discussion of the
mathematical implications of our approach in the field of graph theory and combinatorics
is out of the the scope of this thesis.
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3.2.1 Rewiring algorithm

The rewiring algorithm is composed of two steps: one for governing the creation of new
links, and one for triggering the removal of existing links. In order to set an upper bound
to the diameter of the resulting network, new links may be created. As we want to bound
the diameter to dg < b, we perform the:

Connect two nodes x and y, when their distance is greater than

Step 1 b, ie. do(z,y) > b+ 1.

When connecting x,y a cycle of length b+ 2 is created in the graph, where the distance
between all pair of nodes in the cycle is > g. Conversely, to enforce a lower bound on the
girth, no cycle of length < a must exist. This is accomplished by:

Step 2 Any cycle of length < a is broken.

To ensure a stable and convergent behavior, the algorithm must nonetheless avoid
destroying cycles it creates, hence the lower bound for the girth is a = b+ 2 (i.e. the
algorithm can create cycles that have a length greater or equal to the desired girth).

The rewiring algorithm is defined by repeating the aforemen-
Algorithm tioned steps 1, 2, until the distance between any pair of nodes
is < b and no cycle has a length < a.

The following theorem relates the conditions on the diameter and on the girth:

Theorem 3.2.1. Let G be an undirected graph where the rewiring algorithm has been
applied until termination for a given a,b N*, a = b+ 2; dg and gg be the diameter,
respectively the girth of G. Then b+72 <dg <b, and gg > b+ 2.

Proof. The lower bound for the girth, as resulting from the algorithm, is a = b+ 2 > gg,
thus ¢ > 1145_2_ If the graph contains no cycles, then its girth is infinite; otherwise dg > %*:
if the graph is a cycle, then the results follow; otherwise, the maximum distance between
nodes in the smallest cycles (the size of which corresponds to the girth) determines the
lower bound for the diameter. First consider the case of a graph with at least one cycle;

in this case we have:
b+2  ga
T ZE
2 T 2
If the graph has no cycles, go = 00, thus a < gg Va. Furthermore, its diameter is dg < b,
otherwise connections would have been created by the algorithm resulting in at least one

<da<b (3.1)

cycle. O
To simplify the optimization rules that will be presented in the following section, we

replace bJQF—2 =D, D € N*, in equation 3.1 to obtain:
dg <2D —2 (3.2)

for the diameter, respectively for the girth:

2D < gg (3.3)

The value of D is considered as the optimization parameter of our algorithm.
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3.3 Topology optimization rules

We now express the results of equation 3.1 as Connection and Disconnection rules. By
applying these rules a finite number of times on a connected graph G, the resulting diameter
d is is bounded according to dg < 2D — 2.

Connection Rule Let n; and n; be two non-connected nodes in a connected
graph G, and dg(ni, nj) the minimal routing distance from n; to n; in G. A new
link between n; and n; is created if the following condition holds:

dg(ni,nj) > 2D — 1 (3.4)

where di,(z,y) is defined as min(dg(z,y),da(y,x)). The logical connection is
created by adding n; to N;, respectively n; to IV;.

The Connection Rule bounds the maximum distance between each pair of nodes, hence
the diameter of the network, to a value less than 2D — 1. Conversely, the Disconnection
Rule is applied in order to remove links that represent redundant paths in the graph thus
breaking small cycles and bounding the girth to a value g5 > 2D.

Disconnection Rule Let n; and n; be two connected nodes in an overlay net-
work G, i # j. Let G + G\ {n;} and N; the set of neighbors of n;. Node n; is
disconnected from n; € N; if:

anGNi,k#j,’Nj’ > ’Nk‘ : d*G,(nj,nk) <2D -3 (3.5)

where df.(z,y) is defined as max(dg(x,y),da(y,x)). The disconnection consists
of removing n; from N, respectively n; from N;.

Safeness of the Disconnection Rule The presented rules ensure that the diameter as
well as the girth in the resulting network are bounded according to the previously described
limits. Nonetheless, the optimization process may converge only when global and precise
information about the overlay is available. In a fully distributed implementation, where
each node must rely on partial and potentially out-of-date information about the overlay,
guaranteeing proper operation is more difficult. Whereas degraded information about path
distances in the overlay just increases the average path length and results in a less optimized
overlay, concurrent application of the Disconnection Rule may lead to a partitioning of the
network and thus disruption of higher-level communication. In a situation where complete
knowledge of the overlay is available each cycle can only be broken once, thus the overlay
cannot be partitioned. In a fully distributed scenario local information on each node may
be outdated, e.g. refer to cycles that have already been broken. Hence, to ensure that
the algorithm works as expected a restriction on the Disconnection Rule is introduced:
for each considered cycle, only the node with the greatest identifier (according to some
ordering known to all nodes) is allowed to perform a disconnection. That node is referred
as to the master of a given cycle. Letting only the master node perform disconnections
prevents partitioning, but nonetheless requires the master to keep track of broken cycles, a
solution which has the potential drawback of requiring a large amount of storage on each
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master node, especially in very dynamic networks. The solution that is adopted in our
work is to only allow the master of a cycle to remove links with its own neighbors, thus
making it possible to verify whether the cycle has already been broken by relying only on
already available local and up-to-date information.

3.4 BLATANT-R

The BLATANT-R algorithm is a fully distributed implementation of the topology optimiza-
tion rules that employs bio-inspired swarm intelligence techniques to collect and spread
information across peers. The algorithm presented in this thesis is derived from the one
introduced in [51]; more specifically, the underlying logic of the connection and discon-
nection rules has been adapted to follow the mathematical construction presented at the
beginning of this chapter. BLATANT-R is the second fully distributed implementation of
the algorithm: the first distributed implementation of BLATANT [49, 50| didn’t support
fault tolerance, and was thus not suitable for deployment in a real network. In this respect,
BLATANT-R represents the first fully fault tolerant version of the algorithm. In contrast
to a centralized approach, the decentralized implementation has to balance between precise
and up-to-date information and increased network traffic. Moreover, because of the fully-
distributed design, actions executed by one node may invalidate the information collected
by others.

3.4.1 Swarm intelligence

Swarm intelligence is a field of artificial intelligence that mimics the behavior of swarms
of insects in order to solve computationally intensive optimization problems [48]| or to
implement collective intelligent behaviors [36]. Concerning optimization tasks, a number
of different techniques have been proposed, with the two most known being Particle Swarm
Optimization (PSO) [76] and Ant Colony Optimization (ACO) [98]. While PSO is more
suited for solving numerical problems, ACO naturally targets graph and network related
tasks. Accordingly, in the following we focus our attention on the latter, and briefly discuss
how distributed systems can benefit from ant-inspired solutions.

Ant colony optimization The ant colony optimization [98] (also known as ACO) meta-
heuristic is an optimization technique that replicates the behavior of ants searching for food.
An example of the foraging process is depicted in Figure 3.1. Each ant starts from its nest,
and randomly wanders in the environment, until a food source is found. Subsequently, the
insect returns to the nest, and lays a small amount of chemical pheromone to trace the
path from the nest to the food. Other individuals in the colony will sense the chemical
trail and choose to follow it to reach the food: on their way back to the nest, they will
actively reinforce the trail by depositing more pheromone. In this view, pheromone trails
represent a form of indirect communication between ants, called stigmergy, to signal where
the food is located. Ants are not forced to follow an existing trail: when an ant wanders
in the environment it can choose to either exzploit an existing path, or randomly explore
the environment. If a trail is not reinforced, it will disappear due to the evaporation of the
chemical. By default, in absence of pheromone trails, ant exploration will take place.
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O Nest  —===---- Random wandering
¥» Food e Pheromone trail
®

&é e

Figure 3.1: The ant foraging process

Shortest paths that lead to the food source naturally emerge from this process: be-
cause a short path takes less time to be traveled, the rate at which pheromone trails are
reinforced is faster, thus the concentration levels remains higher than in other paths. Be-
cause the concentration of pheromone on the path also increases the attractiveness of it
toward wandering ants, a positive feedback cycle will be created. Conversely, if a path
becomes inaccessible, evaporation will render it less desirable. Accordingly, ACO exploits
an emergent and adaptive behavior.

This process can be modeled by ant-like software agents and be used to find shortest
paths in graphs. More specifically, in computer science, ACO has been used to solve NP-
complete graph problems, such as the Traveling Salesman Problem [97]. Consequently, a
number of other NP-complete problems have been solved using ACO by transforming them
into an instance of TSP.

Application in Computer Networks Ant algorithms are of simple logic and inher-
ently distributed, because neither central control, nor direct communication between agents
are required. The foraging behavior of ants has been exploited for implementing adaptive
routing algorithms, as shown in [170], or semantic resource discovery protocols [204]. Fol-
lowing the same principles, the clustering behavior of the Messor Sancta species of ants led
to the development of fully distributed load balancing [210] or clustering [113] solutions.
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In the same line of thought, we aim at exploiting some of the principles of ant colony op-
timization in order to simplify the implementation of a distributed version of our overlay
optimization algorithm. In this respect, we deem that the fact that the ACO metaheuris-
tic does not require direct interaction between agents can ease the development of fully
distributed algorithms.

3.4.2 Distributed overlay optimization

The overlay optimization process modifies the logical connections between nodes depend-
ing on the obtained partial, transient information about the network. To collect such data,
different types of mobile agents (referred to as ants) are employed. In the spirit of swarm
intelligence algorithms, the outcome of the optimization process must not depend on indi-
vidual agents but on the operation of a colony as a whole, that is the collaborative actions
of multiple ants executing on the overlay. In the following we detail the distributed imple-
mentation of the optimization algorithm, which comprises the data structures maintained
by each node, the semantic of each ant species, and the behavior executed by each node
according to the perceived status of the network.

3.4.3 Local data structures

Each peer n; maintains a set N; of addresses of other peers representing its neighborhood.
The maximum number of neighbors is m, although the algorithm itself can only create
mo connections, mo < m, during normal operations: the remaining free connections are
reserved for recovery procedures. To avoid the creation of large hubs, the size of the
neighbor set is typically limited to small values < 10.

With the exception of the connection phase, a node n; can only communicate with
peers in its neighborhood N;. Furthermore, it is possible to make a distinction between
active and inactive neighbors. A neighbor of n; is considered inactive until it has exchanged
some information with n;. We denote the fact that n; € N; is an active neighbor of n;
with n; <= n;; inversely, an inactive neighbor is denoted as n; ¢~ n;. Because a node can
only communicate with its neighbors, n; <— n; implies n; € N;.

Along with the neighbor set, each peer also keeps a fixed size cache table («), containing
information about other peers of the network. Each entry in the table has the form
(nj, Nj,dj, t;,t;), where n; is the identifier of the remote peer, N; its neighbor set, d; the
estimated distance from n; to n;, t; the time on n; when that information was retrieved,
and t; the local time of the last entry update. The remote time ¢; is used to determine
if incoming information is older than the current one, whereas t; is used to clean up old
entries when the table fills up. The information found in the « table is highly volatile,
and is continuously updated by ants traveling on the network. To support fault resilience,
as long as n; € N; the entry corresponding to n; in «; cannot be removed: this ensures
that the last known neighbors of n; are always available and cannot be overwritten. An
example of an « table is given in Figure 3.4.3.
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Figure 3.2: Sample BLATANT-R « table
Identifier | Neighbors | Last Update | Timestamp | Distance
A P QK L 87 101 4
U E . F,.B,W 89 85 5

3.4.4 Pheromone trails

As previously discussed, communication between real ants occurs using a stigmergic (i.e.
indirect) mechanism which involves leaving chemical pheromone trails in the environment.
These chemical traces can be sensed by other individuals in the colony and their concen-
tration indicates the desirability of a given path. With time, unless new chemical is left
by an insect, the concentration of the trail completely evaporates. Evaporation has the
added benefit of seamlessly suppressing errors and overcoming bad system decisions. In
our system, we emulate this phenomenon, and in that respect pheromone concentrations
are represented as numerical values 7 € [0, 1] stored on each node and associated with
paths to neighbors in the overlay. Ants executing on a node can both read the actual
concentration of a trail, and reinforce it by increasing its value up to a maximum of 1.

Each node periodically simulates evaporation by lowering the value of a trail 7 according
to an update function 7 <— 7 %, and ¥ < 1. If the concentration on a trail falls below a
threshold ¢, the trail is removed. We distinguish between incoming /3 trails, and outgoing
v trails. When an ant travels from node n; to a neighbor n;, the corresponding trail
vi[nj] on n; is reinforced. Conversely, when the ant arrives on nj, pheromone trail £;[n;]
is reinforced.

3.4.5 Ant species

In the considered framework, ant species describe information containers that can be ex-
changed between nodes and that trigger particular response behaviors, such as creating
or removing overlay links. Ants can nonetheless be viewed as living entities that carry
information, move across the overlay, and perform specific tasks proper to their species.
More specifically, BLATANT-R defines six different species of ant agents:

— Discovery Ants are used to collect and spread information about the status of the
network (nodes and links). Ants wander across the network and store data about
each visited node nj represented as a triple (ng,timestampy, , Ni) containing the
node’s identifier, the remote timestamp at n; when the information was collected,
and its actual neighbors Nj. This triple is appended to a bounded-size vector V/
of maximal length [,. Visited nodes also receive the vector currently carried by the
ant, and use this information to update the local view of the network (stored in the
a table). Depending on the position of each entry in the vector, a node can thus
infer an estimation of the distance of the node in the overlay. An entry in the vector
corresponding to a node n; contains the following information:

— n;: identifier of the visited node;

— Nj: set of neighbors of n;;
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Figure 3.3: BLATANT-R Discovery Ant wandering

— timestamp;: timestamp on n; when the information was collected.

Discovery Ants wander on the overlay following existing links between nodes. At
each step, an ant may choose to either proceed on a random path (exploration)
to one of nodes in the local neighborhood set with probability k, or select a path
depending on its actual pheromone concentration (ezploitation) with probability 1 —
k. More specifically, paths with lower ~ pheromone concentration are preferably
chosen, ensuring a fair coverage of the network. Visited nodes in V' are avoided.

Discovery Ants are responsible for continuously monitoring the state of the network,
and have a limited lifespan 7 (maximum number of wandering steps). As Discovery
Ants may get lost due to node crashes, at regular intervals ¢ a new individual is
generated on every node with probability u, ensuring the survival of the population.
As the optimization task depends on the information gathered by Discovery Ants,
running the algorithm with an empty population will prevent any improvement of
the topology.

An example of the behavior of a Discovery Ant is shown in Figure 3.3. The ant is cre-
ated and executes initially on node R, then moves to F and finally to S. Accordingly,
the information passed to each of the nodes is as follows:

— R receives ();
— E receives ((R, timestampr,{X,C, E}));
— S receives ((R,timestampg,{X,C, E}), (E,timestampg,{A, B, R, S})).

The ant finally collects information on node S and continues its wandering.

Construction-Link Ants are sent by nodes wanting to join the network, but also dur-
ing recovery procedures. A node can either accept the connection, or forward it to
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one of its neighbors (randomly chosen amongst the ones with the smallest degree).
Forwarding is required if the node has already reached the maximum number of
allowed neighbors. To avoid long connection delays, each ant can only travel a max-
imum number of steps clant;;: when the limit is reached the connection procedure
must be completed by the first visited node with a free slot. When node n; accepts
a Construction-Link Ant sent by n;, it adds n; to N; and then sends the ant back
to nj, where n; is added to Nj.

Optimization-Link Ants are instantiated by peers in order to optimize the diameter
of the network. When a node n; wants to create a connection with n; it sends an
ant to it. At m; the ant checks the estimated distance to n; (in the «; table). If
the estimated distance is > 2D — 1, or no information is found in o, the connection
procedure can continue. In this case, n; is added to N;, and the ant migrates back
to n;, where n; is finally added to IV;.

Unlink Ants remove the links as result of the application of the disconnection rule or
when nodes leave the overlay. When a node n; wants to disconnect n; € IV;, it first
removes n; from N;, and then sends an Unlink Ant to n; in order to remove n; from
N;.

J

Update Neighbors Ants notify a node when one of its neighbors has changed its neigh-
bors set. This ensures that each node is able to recover from abrupt disconnection
of a neighbor by connecting with its last known neighbors. Update Neighbors Ants
carry the list of the neighbors N; from the source node n;, and update the entry
corresponding to n; in the a; table of each target neighbor n; € IV;.

Ping Ants are used to keep connections between nodes alive by reinforcing pheromone
trails on visited nodes. Abrupt node disconnection can be detected by monitoring
the concentration of 3 trails: when values approach a lower threshold a recovery pro-
cedure is started. If application traffic is low, the trail between two nodes may not
be frequently reinforced, and thus completely evaporate even though the correspond-
ing nodes are still connected to the overlay. To prevent this from happening, Ping
Ants are periodically deployed as soon as trail concentration falls below a certain
threshold.

3.4.6 Fault resilience

Disconnecting from the overlay can occur either properly or improperly. Proper disconnec-

tions require the leaving node to inform all of its neighbors and initiate a recovery procedure

to ensure connectivity is preserved. This procedure involves sending out Construction-Link

Ants to all neighbors and connecting them using a ring topology (Figure 3.4). Improper or

abrupt disconnections occur when a node stops communicating with its neighbors, either

because of a crash or because of network issues. In this situation, each neighbor starts the

recovery procedure on its own as soon as the failure is detected (by means of monitoring
the concentration of 8 pheromone).
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Proper disconnection: Leaving procedure When a peer wants to quit the network,
it must ensure that all of its neighbors remain connected. When node n; leaves the network,
it first sends an Unlink Ant to all of its neighbors. Next, it sends a Construction-Link Ant
to all its neighbors in order to create a ring connecting all of them. Figures 3.4a) and 3.4b)
depict an example topology before, respectively after the departure of node n;.

b)

Figure 3.4: Leaving procedure

Improper disconnection (crash): Recovery procedure The recovery procedure is
used to prevent network partitioning in the event of a node crash. When a node n;
detects the departure of one of its neighbors n; by sensing the complete evaporation of
its 8 pheromone trail, it may start a recovery procedure. The exact behavior of the node
depends on whether n; ¢ n; or n; < n;.

— if n; # n; no information was ever received from this connection. This situation can
either happen when a node leaves just after being connected, or when a connection
procedure is interrupted. In such cases, n; is just removed from V;.

— if nj < n; some data was already successfully exchanged through this connection.
It is thus necessary to ensure that connectivity of the network is preserved by ex-
ecuting the recovery procedure. This procedure involves removing n; from N; and
subsequently send Construction-Link Ants to all last known neighbors of n; in order
to construct a ring topology as in Figure 3.4. In contrast to a proper disconnection,
the recovery procedure is started by all neighbors of n;, as soon as the failure has been
detected: although this can increase network overhead (proportionally to the size of
the neighborhood set), each neighbor must initiate the recovery process because it
cannot assume that other did or would do it.

3.4.7 Optimization rules evaluation

During its lifetime, each node n; receives information from Discovery Ants, and correspond-
ingly updates its local «; table. Each triple in the ant vector V updates the corresponding
entry in the oy table; if no such entry exists, a new one is created. When the table reaches
its maximum capacity, as well as after a certain amount of time, the least recently updated
entries are replaced. To solve conflicts when receiving concurrent information about the
same node, the remote timestamp in the table and in V are used. At regular intervals w
the contents of the table and the neighbor set are used to construct a partial graph of the
network and evaluate the Disconnection Rule and the Connection Rule. All disconnected
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components that cannot be reached from n;, as well as components connected by means
of non-bidirectional paths are removed from the graph.

Evaluating disconnections For disconnections, node n; computes the shortest paths
not traversing n; between each pair of neighbors n;,n; € IV;. The shortest path is then
selected, and if its length is less than 2D — 2, n; initiates a disconnection (by means of an
Unlink Ant) from either n; or ng: in particular, the neighbor with the highest degree is
disconnected, in order to promote a more balanced link distribution.

Evaluating connections To evaluate new connections, node n; determines the distance
to all nodes n, ¢ N;, and initiates a connection procedure with the farthest node (by
sending an Optimization-Link Ant) if its distance is > 2D — 1. Nodes that are being
connected are marked, so that subsequent rule evaluation will ignore them. Furthermore,
all computed distances are used to update the corresponding distance field in the « table.

Example Figure 3.5 illustrates an example of the rules evaluation procedure: the con-
tents of the «a table for node A, the neighbor set N4, as well as the corresponding partial
graph are shown. Node K is removed from the partial graph because there is no edge
from B to K; conversely, nodes J, L,V are removed because they belong to a disconnected
component. To evaluate the disconnection rule the distance between C, E, Z along paths
that do not traverse A is computed. Accordingly, a path of length 5 hops connects nodes
F and Z, and depending on the value of D either one of the nodes along this path could
be disconnected. Conversely, for evaluating the connection rule, the distance to nodes that
are not within the neighbor set is computed. The obtained value is used to update the
estimated distance field in the « table (for the entry corresponding to the considered node),
and eventually triggers a connection procedure.

a4 (timestamps omitted)

identifier | neighbors | distance
AF.P.Q
AR,S,B
E,N
Z,T
F)N
B
B, T)Y
L,J

Na= {C7E7Z}

< zZz>HH=249"DE3N
W W W W N =

Figure 3.5: BLATANT-R Rules Evaluation

3.5 BLATANT-S

BLATANT-S is the third implementation of the algorithm that focuses on simplicity by
reducing both the computational complexity and the amount of information exchanged
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Node identifier

Figure 3.6: BLATANT-S Discovery-S Ant wandering

between nodes. It is noteworthy to say that the solution proposed by this version is not
meant to replace the —R one, but it is to be considered as an alternative implementation
based on the same optimization rules. In this section the differences between BLATANT-S
and BLATANT-R will be highlighted.

3.5.1 Ant species

The only difference of the —S version compared to the —R one is in the amount of infor-
mation collected and carried by Discovery Ants. In particular, the latter carry a bounded-
length vector V' that contains only the identifier of the nodes visited by the ant. In contrast
to the — R version, no other information about the neighbors is collected, thus the traffic
generated by Discovery Ants is considerably lower. In the following, Discovery Ants used
by the -S version of the algorithm will be referred to as Discovery-S Ants. The exam-
ple depicted in Figure 3.6 shows an ant traveling from R to S, passing through E. The
information passed to each of the nodes is as follows:

— R receives ();
— E receives ((R));

— S receives ((R), (E)).

The ant then adds the identifier of node S at the end of its vector, and continues its
wandering around the network.

3.5.2 Optimization rules evaluation

The evaluation process is performed each time a Discovery Ant-S visits a node and uploads
its information vector. Distance estimations are computed on the base of the relative
distance between identifiers in the vector, rather than through the construction of a graph.
This estimation is used both for evaluating the optimization rules, as well as to update the
corresponding field in the « table. The complexity of evaluating the optimization rules thus
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reduces from O(n?) in BLATANT-R to O(n) in BLATANT-S. On the downside, distance
estimations are less precise and more errors are inevitable.

Evaluating disconnections Nodes first identify all pairs of neighbor’s identifiers within
the information vector V', and then compute the absolute value of the difference between
the positions of the identifiers of each pair in the vector. If the identifier of the node
appears between the pair of neighbors, their distance is set to co. The disconnection rule
is then applied on the pair of neighbors with the smallest in-between distance in the vector.

Evaluating connections A node n; evaluates the distance to any other node ny & N;
by calculating the absolute value of the difference between the position of the target’s
node identifier and either the closest neighbor n; € N; identifier, or the tail of the vector,
whichever value is smaller. This evaluation is stored in the « table. Periodic evaluation of
the connection rule occurs at intervals w, and might subsequently trigger the creation of a
new link. To prevent blatant errors, the list of neighbors of neighbors stored in the table is
used to adjust distances if necessary: more specifically, if a node appears to be connected
to a neighbor, its distance is automatically set equal to 2.

Example Figure 3.7 illustrates an example of the rules evaluation procedure triggered
by the reception of an information vector on node F. We suppose that the neighbors of
node F are A and M, and the vector carried by the incoming Discovery Ant-S contains
{U,M,0,S,E,W, A}, where A is the last node visited by the ant prior to F. To evaluate
disconnections, the distance between neighbors A and M in the vector is considered: in
the example, their distance is 5. Conversely, for connections, the distances between nodes
W,E,S,0 and either A, M or the end of the vector are computed. Accordingly, the
distances are of 2 and 3 hops, for nodes W, O, U, respectively E,S.

Np = {A, M} Discovery Ant Vector
[U[M[O[S[E|W][A]

Figure 3.7: BLATANT-S Rules Evaluation on node F

3.6 Evaluation

By means of extensive experimentation of BLATANT-R and BLATANT-S, we aim at eval-
uating their behavior along different axes. More specifically, both the properties of the
resulting networks as well as the robustness of the algorithm need to be assessed. Accord-
ingly, in this section we present the considered measurements and the corresponding test
scenarios, a summary of which is provided in Table 3.1.

Important measurements for evaluating the optimization process are the diameter, the
average path length, the number of (directed) edges in the overlay, the degree distribution,
and the number of cycles as well as their length. While the diameter and average path
length assess the capacity of the algorithm to bound the maximum distance between any
pair of peers, values concerning cycles quantify the girth of the graph and the amount
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of redundant paths on the overlay. In addition, we deem the degree distribution and the
number of edges useful for determining the presence of hubs, respectively the complexity
of the resulting network.

BLATANT-R and BLATANT-S are compared to highlight their benefits and drawbacks;
in particular, we aim at understanding if the increased complexity of the -R version provides
advantages over the simpler distance estimation logic implemented by the -S version.

Scenario Focus of the evaluation

Convergence in a stable overlay

Adaptiveness

Scalability

Overlay fault resilience

Communication fault tolerance

Sensitivity

Comparison with NEWSCAST and GNUTELLA

QHdHOQm -

Table 3.1: Summary of overlay evaluation scenarios

3.6.1 Simulation setup

All evaluation scenarios are executed on a custom discrete-time simulator with a resolution
of 50 ms that enables accurate measurements of the aforementioned variables. Communi-
cation delays between peers are determined by an underlying topology of 3037 nodes and
4788 links created with I-NET 3.0 [295]. The average path length is of 3 hops, and the
average latency on each link is 78 ms. The topology is depicted in Figure 3.8.

Figure 3.8: Underlying topology

Unless otherwise specified, in all scenarios an overlay of 1281 nodes is constructed; 10
nodes out of 1281 constitute the well-known connection points of the overlay, which are
linked together with random connections. At the beginning of the simulation, the remaining
1271 nodes initiate a connection procedure by sending a Construction-Link Ant to one of
the well-known peers (chosen uniformly at random). Unless otherwise specified, in dynamic
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scenarios the number of nodes varies during execution, as nodes joining and leaving the
overlay are simulated in the interval between 6 hours and 9 hours into simulations, with a
rate of one node added and one removed every 4 seconds. In this regard, two disconnection
strategies have been considered, proper and improper, with the probability of an improper
disconnection being 50%. The reference parameter values used during all simulations,
unless otherwise stated, are detailed in Table 3.2. According to the rewiring algorithm
performed by BLATANT, the choice of the optimization parameter D = 5 aims at obtaining
a diameter < 2D — 2 =8 and a girth > 2D = 10.

A sensitivity analysis of some of these values is detailed in the following. To obtain
statistically representative data, 5 simulation runs for each scenario are performed. Each
run simulates an execution of 12 hours, which includes the time required to initially setup
the overlay. A baseline for comparison for all considered values is represented in a reference
scenario, that is used in our sensitivity analysis in scenarios of set F.

Value  Description

D 5 Optimization parameter

[ 28 Maximum number of entries in the « table of each
node

[age | 300 Maximum age for valid entries in the « table (in sec-
onds); entries older than this value are removed from
the table

m 8 Maximum node degree (number of neighbors)

mo 6 Maximum number of allowed connections created by
Optimization-Link Ants

L 100 Discovery Ants respawn interval (in seconds)

s 25 Maximum number of hops that Discovery Ants can
travel in the network

7 5% Discovery Ants respawn probability

ly 15 Discovery Ants information vector maximum length

€ 0.02 Minimum pheromone concentration (for both 5 and =)

(I 0.023% ~ pheromone decay (applied every 100ms, corresponds
to a complete evaporation in 30 seconds)

(I 0.020 B pheromone decay (applied every 100ms, corresponds
to a complete evaporation in 60 seconds)

K 50% Discovery Ants exploration probability

w 1 Rules evaluation period (in seconds)

clantyy 10 Maximum number of hops for Construction-Link Ants

Table 3.2: Summary of overlay evaluation parameters

To provide a simple baseline for comparison with different overlay management al-
gorithms, simulations in scenario G experiment with topologies constructed using the
NEwWSCAST [158] epidemic algorithm and a GNUTELLA algorithm. Concerning NEWS-
CAST experiments, each node maintains a cache table of 20 entries, which is merged with
other peers every 10 minutes on average, whereas in GNUTELLA runs each node maintains
at most 10 neighbors (an exception is made for well-known nodes), and ping messages are
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forwarded every 30 seconds at a distance of 7 hops in the overlay to at most 4 neighbors at
each step. Dynamic network characteristics are simulated as in BLATANT dynamic scenar-
ios, with nodes joining and leaving the overlay in the interval between 6 hours and 9 hours
in to the simulations, with a rate of one node joining and one leaving every 4 seconds. The
size of the cache in NEWSCAST is derived from the experiments detailed in [286], and the
merge frequency has been chosen in order to obtain a sufficiently stable overlay without
compromising its fault resiliency.

3.6.2 Traffic estimation

Besides the qualities of the resulting network, another important measure is the traffic
generated by the algorithm. By determining the amount of ant agents employed by the
algorithm, the overall consumed bandwidth can be determined. Concretely, the communi-
cation cost for transferring each species of ant between two nodes in the overlay has been
estimated as follows:

— Discovery Ant: 388 bits plus 144 bits/visited node in BLATANT-S; 388 bytes plus 176
bits/visited node plus 144 bytes per each neighbor of a visited node in BLATANT-R;

— Construction-link Ant: 532 bits;

— Optimization-link Ant: 532 bits;

— Unlink Ant: 532 bits;

— Update Neighbors Ant: 532 bits plus 144 bits/neighbor;
— Ping Ant: 532 bits.

These estimations are based on the actual information carried by each ant, and include
both the size of an IPv6 header (320 bit), a UDP header (64 bit), as well as a 4 bits
packet type identifier and 144 bits source identifier (128 bits IPv6 identifier plus 16 bits
port number). For visited nodes, the assumed 144 and 176 bits comprise 128 bits for the
IPv6 address, 16 bits for the port number, and 32 bits (BLATANT-R ONLY) for the remote
timestamp. It is noteworthy to say that the provided results refer only to the case where
no application traffic is produced, thus the number of Ping Ants might be higher than in
real situations and thus represents an upper bound rather than a typical value. Low-level
network pings account for 224 bits.

In NEWSCAST simulations, the size of each exchanged entry in cache tables is estimated
at 176 bits, comprising of 128 bits for the address, 16 bits for the port number and 32
bits for the timestamp. The base cost of a merge operation is assumed to be 532 bits
per transmission (each merge involves 2 transmissions) plus the cost of transmitting each
entry.

In GNUTELLA simulations the cost of a ping message is 184 bits (the size of the message
header according to protocol version 0.4 [3]), whereas a pong message weights 296 bits (of
which 184 bits concern the protocol header). For simplicity, we assume here that messages
are transmitted using UDP instead of TCP, thus an overhead of 384 bits per packet is
considered. Accordingly, for connections, the overall amount of the data exchanged is
assumed to be 280 bits, and two packets are used.
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3.6.3 Scenario details

In the following we present the details of each evaluation scenario, and highlight the pa-
rameter values that have been considered for both a performance and a sensitivity analysis.
The corresponding results are presented in Section 3.7.

A - Convergence of the optimization process To evaluate the fully distributed
optimization process implemented by BLATANT-R and BLATANT-S, a set of experiments
with reliable communication was considered. Once constructed, the 1281 nodes composing
the network are not modified, allowing the execution of the algorithm in a static situation.
According to the value of optimization parameter D = 5, successful optimization of the
overlay should lead to a diameter < 8, and a girth > 10. These experiments also provide a
useful insight on the the disadvantages incurred running the optimization process locally
on each node without global and reliable information, and highlight the differences between
the two versions of the algorithm.

B - Adaptiveness In the previous sections, the ability of the algorithm to adapt to
different network situations has emerged as an important feature. Accordingly, we exam-
ined the behavior of both versions of the algorithm in different dynamic scenarios, with
the goal of determining the reactivity of the system to changes in the overlay such as the
addition or removal of nodes. Experiments in set B simulate a dynamic network where
new nodes connect to the overlay and subsequently disconnect from it. The disconnections
happen cleanly, with nodes quitting the network ensuring proper connectivity by executing
the leaving procedure. In contrast to other scenarios, during simulations, nodes are added
and removed in the period between 30 minutes and 6 hours into simulation, according to
a Poisson process with an average rate of one connection and one disconnection every 4
seconds.

C - Scalability In the same spirit as in the previous scenario, scalability experiments in
scenario C aim at assessing the response of the algorithm in a growing network, where new
nodes periodically join-in at a rate of a node added every 2 seconds, from 30 minutes up
until 6 hours into simulation. Nodes send their connection request (using a Construction-
Link Ant) to one of the well-known nodes. The final size of the network, after the expansion
phase, is of 10620 nodes.

D - Overlay fault resilience The fault resilience of BLATANT overlays is evaluated in
experiments of scenario D, with nodes joining the network and nodes leaving it improperly
without informing neighbors, hence simulating a crash or an unexpected failure. In this
case, we expect a recovery procedure to be initiated by nearby nodes. As with scenarios
in B, during the dynamic part of the simulation nodes are also added to the system. More
specifically, additions and removals are performed between 30 minutes and 6 hours into
simulation, according to a Poisson process with an average rate of one connection and one
improper disconnection every 4 seconds.

Furthermore, high-churn was simulated to determine the robustness of the overlay in
the event of sudden disconnection of a large portion of the nodes. To evaluate such high-
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churn situations, random sets of nodes are removed from the overlay at 60 minutes into
simulation, and the size of the largest connected component in the overlay is measured;
more precisely, we consider the concurrent removal of 50, 100, 250, 500, 750 and 1000 nodes
selected uniformly at random out of the initial 1281. All nodes are disconnected without
performing a proper leaving procedure, thus connectivity has to be ensured by recovery
procedures started by surrounding nodes.

E - Communication fault tolerance An important aspect of a fully distributed algo-
rithm, is its ability to avoid disastrous consequences in the presence of minor communi-
cation errors. In this regard, in scenario E the fault tolerance characteristics of BldtAnt
are determined by simulating packet delay and packet loss. Specifically, each ant has a
2% chance of getting lost migration, and 20% chance of being delayed by 2500ms (thus
preventing FIFO communication between nodes). Concerning the dynamics of the net-
work, this set of experiments assess the performance of BldtAnt in comparison to scenarios
A, B, and D (namely stable network conditions, dynamic network conditions with proper
disconnections, and dynamic network conditions with inproper disconnections).

F - Sensitivity A number of parameters influence the behavior of the algorithm and its
performance. Hence, it is important to understand how each value modifies the outcome of
the optimization process, the robustness of the overlay against failures, and the consumed
bandwidth. The baseline for this comparison is a dynamic network scenario as described
in section 3.6.1. From this perspective, scenario F experiments with different values for
each important parameter, more specifically:

— FO0 - Baseline scenario: the baseline for comparison is determined by a dynamic
scenario where the default parameter values, as described in the previous sections,
are used. In particular, the optimization parameters D is set to 5, hence the expected
upper bound for the diameter is 2D — 2 = 8, whereas the lower bound for the girth
is 2D = 10. The birth probability for Discover Ants is 5%, and each ant carries a
vector of at most 15 entries, for at most 25 hops in the overlay. At each wandering
step, Discover Ants have a 50% of probability of following a random path instead of
the one associated with the lowest v pheromone concentration. Finally, each node
is allowed to create at most 6 connections with other nodes by means Optimization-
Link Ants, out of a total of 8 connections, and the « table on each node is allowed
to contain a maximum of 28 entries.

— F1 - Optimization parameter D: in this scenario we focus on how the optimiza-
tion parameter D affects the characteristics of the resulting overlay, by experimenting
with different values: 3,4,6 and 7 (compared to D = 5 being the default value used
in the reference scenario and throughout the rest of the simulation scenarios). The
expected upper bounds for the diameter, 2D — 2, are thus 4, 6,8 and 12; conversely,
the lower bounds for the girth, 2D, are 6,8,12 and 14.

— F2 - Discovery Ant birth probability pu: the goal is to understand how the
number of Discover Ants, thus the amount of information exchanged by nodes, affects
the convergence rate and the quality of the overlay. In this regard, the probability
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1 of each node generating a Discovery Ant at intervals of + = 300 seconds is varied
from 5% (the default value used in all other scenarios), to 7.5%, 1%, and 0%. In
the latter case, the optimization process is actually disabled, as it depends on the
information provided by Discovery Ants.

— F3 - Maximum length [, of the information vector: these experiments aim
at understanding the influence of the amount of information carried by Discovery
Ants on the optimization process. Herein, the upper bound for the length of the
information vector [, is chosen to be either 12, or 17 (15 being the default value).
Eventual benefits of additional information are to be assessed in the light of the
increased generated traffic.

— F4 - Maximum number of allowed Discovery Ant hops m: conversely to
previous experiments, we assess here the influence of the maximum number of hops
m that Discovery Ants are allowed to travel in the overlay before being discarded.
The considered values are 15, 25 (the default), 50, and 100.

— F5 - Maximum per-node degree mo: to determine how much the optimization
process depends on the constraint on the maximum per-node degree, in these exper-
iments the value of mo is chosen as either 4 or 8, compared to 6 in the reference
experiments. The general maximum node degree m is left equal to 8.

— F6 - Exploration versus Exploitation: the tradeoff between exploration and
exploitation is assessed by varying the probability x of a Discovery Ant following a
random path, which is changed from the default value of 50% to 0%, 25%, 75%, and
100%.

— F7 - Size of the « table: we assess the influence of the amount of information
stored by each node in its local « table by varying its size from the default 28 entries,
down to 20 and up to 36.

G - Comparison with NEwscAasT and GNUTELLA To understand how BLATANT
compares with existing unstructured overlay management algorithms, scenario G details
the behavior of NEWSCAST and GNUTELLA in the same network conditions as the reference
evaluation in scenario F0. More specifically, different measurements will be compared, as
for example the average path length, the amount and type of cycles in the graph, and the
consumed bandwidth.

3.7 Results

In this section the results obtained by both versions of the algorithm in the aforementioned
scenarios are presented and discussed. The qualities of the algorithms are analyzed with
respect to the requirements and goals defined at the beginning of this chapter. Concerning
the edge count, results refer to the number of out-links, determined by the size of the
neighborhood set of each node.
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3.7.1 A - Convergence of the optimization process
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Figure 3.9: A - Convergence of the optimization process (diameter and cycles)

The results shown in Figure 3.9 demonstrate the convergence of the diameter (a) and the
number and length of cycles (b) in both the BLATANT-R and the BLATANT-S simulations.
With both algorithms, the average path length converges toward 6, well under the bound
of 2D — 2 = 8; with the -S version this convergence is slower, and the resulting graph
exhibits a slightly higher number of edges, namely an average of 7643 links at the end of
the simulation for BLATANT-S versus 7438 for BLATANT-R. This result can be attributed
to the lower accuracy of algorithm -S, which has more difficulty finding correct distance
estimations. The inaccuracies of the -S version are even more evident when the lengths of
cycles are compared: with the -R, version, the number of large cycles (of length larger than
6) is significant, whereas with the -S version such cycles are almost non-existent. From this
point of view, neither algorithm is able to fulfill the optimization goal of a girth > 10; it is
nonetheless noteworthy to mention that both versions are able to limit the number of small
cycles (of length up to 4), and maintain an average clustering coefficient close or equal to 0
in all simulation runs. A comparison between the rate of the emergence of large cycles and
the rate of convergence of the average path length also hints at a slight relation between
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the two: as small cycles are broken and only the larger ones are left, Discovery Ants are
less likely to wander on redundant paths. A positive feedback cycle is thus created, and
benefits more precise distance estimations which consequently lead to better decisions in
the optimization process.
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Figure 3.10: A - Convergence of the optimization process (degree, traffic, and stability)

(c) Network stability
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Figure 3.10 (a) (b) depicts the evolution of the degree distribution and the bandwidth
consumed by both algorithms. Concerning the degree, the limit of 6 neighbors per node
is reached by a very large fraction of the nodes (> 80%) in both algorithms, indicating
that the upper bound mo is an important parameter for limiting the number of edges
in the resulting overlay. BLATANT-S nonetheless shows a slightly worse performance,
with an average of 95% of the nodes having a degree of 6 or higher, compared to 85% of
the nodes in BLATANT-R. The small number of nodes with a degree higher than 6 can be
attributed to well-known nodes that are subject to a higher number of incoming connection
requests. Concerning the network cost, as expected algorithm -S generates less traffic than
-R because of the small amount of information carried by Discovery Ants. More precisely,
the former algorithm consumes 160 kbps on average, whereas the latter consumes 310 kbps.

The final measure we take into account concerns the stability of the algorithm in terms
of the average number of links that are changed every second in the overlay. Surprisingly,
as shown in Figure 3.10 (c), the increased accuracy in the distance evaluation process of
BLATANT-R does not seem to lead to an increase in stability: whereas the -S version
modifies an average of 0.20 links per second (after the initialization phase), the -R version
modifies 0.79 links/second. The reason for the unexpected more stable behavior of the -S
version is due to the larger number of edges, which limits the possibility of creating a large
number of new links when the network becomes saturated.

3.7.2 B - Adaptiveness

Both algorithms are able to control dynamic situations, with nodes connecting and dis-
connecting at 4 seconds intervals, by maintaining a diameter value slightly higher than the
upper bound (2D — 2 = 8), as shown in Figure 3.11 (a) (vertical lines are used to mark
the start and end of the dynamic part of the simulation). However, the behavior related to
the lower bound of the girth in the dynamic phase of the simulation is noticeably different:
with the -S version the number of large cycles is significantly reduced, while with the -R
many cycles of length greater or equal to 6 are present. These results further highlight
the benefits of a more accurate distance evaluation in detecting and removing small cycles,
and therefore redundant paths in the overlay.

With regards to the data exchanged by nodes during the simulations, detailed in Figure
3.11 (c), it is possible to note the contrasting behavior of the -R and -S versions: while in
the former the consumed bandwidth decreases during the dynamic phase (from an average
of 310 kpbs, as observed in scenario A, to 285 kbps), in the latter it increases substantially
(from 160 kbps to 220 kbps). With the -R version, the traffic reduction can be attributed
to the diminished number of Discovery Ants, as well as Ping Ants, that are lost on nodes
disconnecting from the network. This reduction is significant, and compensates for the
increase of the Optimization-Link Ant, Unlink Ant, and Update Neighbors Ant populations.
On the contrary, with the -S version the benefits of a reduced population of Discovery Ants
are less evident, thus the traffic is heavily influenced by the additional required species that
are instanced to connect new nodes and ensure connectivity across the overlay.
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Figure 3.11: B - Adaptiveness (diameter, cycles and traffic)

3.7.3 C - Scalability

As shown in Figure 3.12 (a), both the -R and the -S version of the algorithm are able to
accommodate the additional nodes that connect to the overlay during the expansion period
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(from 30 minutes until 6 hours into simulation) that made up the final overlay composed
of 10620 nodes as well as 64555 and 65673 edges in the -R and -S version respectively. The
diameter and average path length in the -S algorithm are more unstable than in the -R
during the expanding phase of the simulation; nonetheless, both algorithms maintain the
average path length closer to the user defined target 2D — 2 = 8. Similarly, the number
of cycles (Figure 3.12 (b)) of length 4 and 5 is considerably higher with the —S version,
which confirms the evidence found in the previous scenarios that the latter executes a less
accurate optimization process.

An analysis of the bandwidth consumed by both algorithms, illustrated in Figure
3.12 (c), shows an expected significant growth in the traffic generated by Discovery and
Discovery-S ants. More specifically, the overall traffic required to maintain the final overlay
of 10620 nodes is 2670 kbps with BLATANT-R, and 1390 kbps with BLATANT-S, which
scales proportionally to the size of the network (as each node has a 5% probability of
generating an ant every 100 seconds).

3.7.4 D - Overlay fault resilience

Overlay fault resilience describes the ability of the algorithm to respond to node failures
that result in abrupt disconnections without compromising the connectivity of the overlay.
Figure 3.13 details the results pertaining to the diameter, edge count, and average path
length obtained in our simulation where new nodes connect to the overlay, and existing
nodes unexpectedly stop interacting with other nodes and disconnect from the network at
intervals of 4 seconds from 30 minutes to 6 hours into the simulation. In all experiments,
the overlay remains fully connected, thanks to the emergency recovery procedures that
are started by the neighbors of leaving nodes. The recovery activity is highlighted by the
increased traffic generated by Construction-Link Ants. Results concerning the cycles in
the graph, as well as the generated traffic, reflect those obtained in scenario B, with only
a slight increase in the number of Construction-Link Ants.

The behavior of the algorithm in the event of a failure of a large portion of the nodes
is shown in Figure 3.14 (a)(b)(c). The results prove the ability of both BLATANT-R
and BLATANT-S to cope with such extreme situations without catastrophic consequences,
such as a partitioning of the overlay, even when 750 out of 1281 nodes are simultaneously
disconnected (hence results for concurrent disconnection of 25, 50, 100, 250, and 500 nodes
are omitted). When 1000 nodes are disconnected the network becomes slightly partitioned,
with the size of the largest partition being about 280 nodes (out of 281) on average with
BLATANT-S and 276 with BLATANT-R.

3.7.5 E - Communication fault tolerance

Surviving the loss of information during communication is another important aspect of
the robustness of a distributed system. The results of the experiments replicating the
conditions defined in scenarios A,B, and D are depicted in Figure 3.15, 3.16, and 3.17
respectively. The obtained results show that both the -R and the -S versions of the
algorithm are able to manage loss of information transmitted over the network (namely,
ant agents) and communication delays, and maintain the diameter bounded; however,
it should be noted that small average path lengths and diameter are mostly due to the
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Figure 3.12: C - Scalability (diameter, cycles, and traffic)

excessive number of links that are erroneously created by the algorithm, rather than being
the result of a controlled behavior. During the dynamic phase, with proper and improper
disconnections, the number of edges is heavily influenced by disconnecting nodes, as we

note a sharp increase when these node dynamics end.
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Figure 3.14: D - Overlay fault resilience (average path length, network size, and largest
connected component)

Although not shown in the figures, the behavior concerning graph cycles is highly vari-
able, with the presence of a high number of small cycles of length up to 4. During all
simulations, despite the harsh conditions of the network, the overlay remains fully con-
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Figure 3.15: E - Communication fault tolerance, stable scenario (diameter, and traffic)

nected; however both the number of links and the traffic significantly increase: concerning
the former, we observe an average of 8900 links (-R version) and 9200 links (-S version)
during the dynamic phases, and 9900 links (for both algorithms) afterwards. As depicted
in the graphs, the traffic increase is due to the Construction-Link Ants, which are the result
of a high number of recovery procedures that are started when a node stops receiving ants
from a neighbor because of lost network packets. Frequent changes in the neighborhood
sets can also be observed, as signaled by the number of Update Neighbors Ants, which
account for the largest portion of the overall traffic.

3.7.6 F - Sensitivity

The results obtained through our sensitivity analysis enable a deeper understanding of
the influence of each parameter on the outcome of the optimization process, namely the
complexity of the resulting topology, as well as its network cost. Each experiment targets
one single parameter and results are compared with the reference scenario that is detailed
below. Except for the reference scenario, detailed graphs for this section are available in
Appendix A.
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Figure 3.16: E - Communication fault tolerance, proper disconnection (diameter, and
traffic)

FO - Reference scenario In the reference scenario the network is stable until 6 hours
into simulation; subsequently, one node is added and one is removed every 4 seconds. As
shown in figure 3.18 (a), the -R and the -S versions exhibit a similar behavior by reducing
the average path length to 6 during the initial phases of the simulation; however, when
dynamicity is introduced in the overlay, both algorithms manage to maintain an average
path length between 8 and 10. Because a large number of existing nodes leave the overlay,
the number of edges reduces from around 7500 (-R) and 7600 (-S), to about 6000 and
7300, respectively.

The information about graph cycles depicted in Figure 3.18 (b) supports the evidence
found in early results of scenario A: the more accurate distance estimation mechanism
employed by BLATANT-R compared to the -S version improves the optimization process
and prevents cycles of length 3 and 4 even in the dynamic part of the simulation. On the
contrary, results in Figure 3.19 (a) show very similar behavior of both algorithms concerning
the degree distribution, with the -R version obtaining a slightly smaller number of nodes
with maximum optimization degree (d(6)); the drop during the dynamic phase is due to the



3.7. Results 75

BLATANT-R BLATANT-S

r 10000 129, r 10000

N -N

™S - -
I 9900

-_—

nd Dynamic

& ! diameter | [ 9800 &

< 1 - e average =3 ! diameter 9500

= 1 \ — = — edges L 9600 < 10 I 44444444444444 average r

& 2 — - = edges

ﬁ 104 _l:’ F9700

] L9400 || B 9 "

o 91 S| o Losoo b

% 2|2 8

g - 9200 5 84

- 4 - |-

< < 9500

P - 9000 PEEE

Q Q

g 7 g 9400

< <

2 &l - 8800 A 61 19300
sl @l 111218600 st~ ] T gy

2000 6000 10000 14000 18000 22000 26000 30000 34000 2000 6000 10000 14000 18000 22000 26000 30000 34000
Simulation time (seconds) Simulation time (seconds)

(a) Diameter, average path length, edge count

1000 o 1000
g o — s — . — —r — . — — _g_ — — — — — — -
5 g
2 g
800 /N 3 a
k . il T —r— =]
S e — N st
2 —_————— e —- - B 100 T —
g | b
=2 600 2 o
o 3] k=] iscov
£ £ Discovery-S Ant
g b - g g — - = Unlink Ant
= | Discovery Ant = 2 . Ping Ant
2 400 - E — = = Unlink Ant g l = — . — = Update Neighbors Ant
2 | E - +++ Ping Ant 2 104t % —_ Optimization-Link Ant
o) || g Update Neighbors Ant o R — .- — Construction-Link Ant
’ [a) Optimization-Link Ant ,
wlj| 5 — - — Construction-Link Ant :
.| @ :
st R |
1
T T T T T T T
1000 5000 9000 13000 17000 21000 25000 29000 33000 1000 5000 9000 13000 17000 21000 25000 29000 33000
Time in simulation (seconds) Time in simulation (seconds)
(b) Traffic

Figure 3.17: E - Communication fault tolerance, improper disconnection (diameter, and
traffic)

removal of a large number of nodes, and the addition of new nodes that join the network
with only one neighbor. Finally, in relation to the generated network traffic, it is possible
to note the influence of Construction-Link Ants in the dynamic interval, with an average
of 50 kbps generated with both versions of the algorithm.

A detailed analysis of the connection and disconnection operations started by both
algorithms reveals that the -R version initiates significantly less connections procedures
than the -S version, with an average of 15560 and 65292 respectively. These results are
reflected in the average bandwidth consumed by Optimization-Link Ants, which amounts
for 0.37 kbps for the -R version and 0.87 kbps for the -S one. The improved distance
evaluation implemented in the -R version also results in a higher percentage of initiated
connections that are successfully and correctly completed (i.e. connections that correspond
to a correct distance estimation and are accepted by both nodes). More specifically, the -R.
version attains an average of 46.5%, whereas the -S one only achieves an average of 6.65%.
Nonetheless, both algorithms exhibit a similar error rate concerning completed connections,
with an average of 47.26% (-R) and 48.98% (-S) of the completed connections resulting
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Figure 3.18: F0 - Sensitivity reference scenario (diameter and graph cycles)

from wrong distance estimations.

Additional experiments showed that disconnection procedures help improving the con-
vergence of the diameter and average path length. In particular, the achieved average
path length at 5 hours 50 minutes into simulation was measured to be 6 with both algo-
rithms when disconnection procedures were enabled; conversely, without disconnections,
the average result was 6.37 and 7.5 for BLATANT-R and BLATANT-S respectively. These
results highlight the need for both optimization rules (connection and disconnection) for
the proper operation of the algorithm.

F1 - Optimization parameter D FExperiments with different values for the parameter
D aim at assessing the achievable control over the optimization process. As shown in Figure
A1 (a), differences are noticeable only with BLATANT-R, mostly during the initial phase
of the simulation, where the average path length converges toward a common minimum of
6. In this regard, only the experiment with D = 7 shows a significantly different behavior
throughout the whole simulation. Concerning the graph cycles, shown in Figure A.1 (b),
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Figure 3.19: FO - Sensitivity reference scenario (degree and traffic)

it is possible to note how smaller values for D result, as expected, in a larger number of
cycles of length less than 6. Conversely, the number of edges (Figure A.1 (d)) decreases
with larger D values, as less links are required to bound the diameter and to maintain the
lower bound on the girth. Ultimately, in respect to the network overhead, we note that the
generated traffic is inversely proportional to the value of D, a fact that can be attributed
to the reduced number of links which leads to a diminished number of Ping Ants that are
sent by nodes to their neighbors.

F2 - Discovery Ant birth probability i The optimization process depends on the
information collected and spread by Discovery Ants. Intuitively, a larger population of
such ants would provide more information to each node, possibly improving the outcome
of the optimization. As shown in Figure A.2 (a), when ants are not deployed in the overlay
(i.e. birth probability equal to 0%), the average path length is about 15 hops with both
versions of the algorithm. However, faster convergence toward 6 hops is achieved as the
population is increased, and better control during the dynamic phase of the simulation is
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obtained. A side-effect of the dynamics of the network also affects the simulation with no
Discovery Ants, which sees its average path length decrease to a value of 13. With regard
to the graph cycles (A.2 (b)) the simulation with no Discovery Ants seems to perform
better than the others, by exhibiting a smaller number of cycles of length less than 6.
This result is easily explained by the fact that typically no cycles are created during the
construction phase, as each new node connects as a leaf of one of the existing nodes, unless
multiple connection requests are started. This fact is also reflected in the smaller number
of edges present in the overlay, as shown in Figure A.2 (¢). During the dynamic part of the
simulation, we note that larger populations help achieve a more stable behavior. Clearly,
more ants not only provide better results, but also generate more traffic on the network
(Figure A.2 (d)), hence a tradeoff is required: consequently, a birth probability u = 5%,
chosen as default value in our other experiments, seems to provide satisfactory results.

F3 - Maximum length [, of the information vector The maximum length of the
information vector carried by Discovery Ants determines how far each node can see in the
overlay. Apart from a slight difference in the consumed bandwidth, none of the sensitivity
analysis experiments concerning the maximum length [, of the information vector carried
by Discovery Ants show significant variations. The observed convergence of average path
length (Figure A.3 (a)), as well as the type and length of the detected graph cycles (Figure
A.3 (b)) are relatively similar, meaning that small variations in the amount of information
available to each node neither benefits nor worsens the optimization process.

F4 - Maximum number of allowed Discovery Ant hops m By letting Discovery Ant
travel for more hops in the overlay increases the number of visited nodes and the amount
of information available to each node. As shown in Figure A.4 (a), faster convergence of
the average path length can be achieved with more than 15 hops. Concerning graph cycles
(Figure A.4 (b)), significant differences are visible only in BLATANT-S, with the detection
and removal of small cycles improving as ants are given more hops to travel in the overlay.
This finding can be explained by the fact that distance evaluations in the -S version are
extracted directly from the vector carried by Discovery Ants, hence better information
quickly leads to an improved optimization process. Unsurprisingly, the amount of traffic
generated by the algorithm is proportional to the number of hops each ant travels in the
overlay, thus a trade-off is required (Figure A.4 (d)).

F5 - Maximum per-node degree mo The maximum number of neighbors for each
node represents the second most important optimization constraint after the parameter D.
On one hand, a value that is too small could hinder the optimization process and prevent
successful convergence of the diameter and average path length. On the other hand, a
value that is too large would permit the creation of large hubs in the overlay, and increase
the overall traffic generated by Ping Ants. The results illustrated in Figure A.5 (a) show
that neither version of the algorithm can ensure the upper bound on the diameter when
only 4 neighbors are allowed. Meanwhile, in Figure A.5 (b) we note that a value of mo = 8
leaves a larger number of cycles of length less than 6, indicating a less optimized overlay.
Therefore, the default value of 6 represents the best trade-off.
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F6 - Exploration versus Exploitation Discovery Ant wandering on the overlay can
either choose to follow a random path (ezploration) or the one with the lowest v pheromone
concentration (ezploitation). As shown in Figure A.6, no noticeable variation can be
detected when the overlay is stable. However, some slight differences can be observed in the
dynamic phase of the simulation. In particular, when full exploration (100%) is employed
the overall traffic is higher; conversely, with full exploitation (0%), a less optimized overlay
with a higher number of cycles smaller than 6 is obtained. These results motivate our
default choice of kK = 50% as the more appropriate one.

F7 - Size of the o table The « table maintained by each node contains partial knowl-
edge about the overlay which is used to determine if new connections are to be created and
if cycles that are to be broken exist. It is interesting to determine how this information
influences the optimization process achieved by BLATANT. As expected, the results shown
in Figure A.7 show no significant difference between simulations with different table sizes
in BLATANT-S, as only the connection process depends on the information in the table.
On the contrary, with BLATANT-R the results concerning graph cycles (Figure A.7 (b))
show that a larger table enables better detection and removal of small cycles. Although a
larger table does not increase the traffic generated by the algorithm, it augments the time
required to evaluate the information and extract distance estimations, in particular with
BLATANT-R. Moreover, a larger table is more prone to containing outdated information
which could lead to wrong optimization decisions.

3.7.7 G - Comparison with Newscast and Gnutella

To better understand the benefits of BLATANT, we compare here the results obtained
in the stable scenario A, as well as in the dynamic baseline scenario F0, with two other
overlay management algorithms, namely NEWSCAST and GNUTELLA. Comparisons in
stable conditions provide useful information about the static characteristics of the resulting
overlays, whereas dynamic simulations provide an insight into their behavior in realistic
conditions.

Stable overlay The diameter and average path length are reduced by both NEWSCAST
and GNUTELLA to a value between 5 and 6, and 4 respectively (Figure 3.20 (a)). In contrast
to BLATANT, it is not possible to constrain these values as they are emerging characteristics
of the management algorithm rather than the result of a willful optimization process. The
same observations can be made concerning the graph cycles (Figure 3.20 (b)): with both
NEWSCAST and GNUTELLA a large number of small cycles of length 3 and 4 exist in the
graph, and the average clustering coefficient is 0.72 for the former (which is compatible
with the observations made in [158, 159]), and 0.49 for the latter. Accordingly, in contrast
to BLATANT (which exhibits an average clustering coefficient of 0), many redundant paths
exist in these overlays.

Figure 3.21 (a) shows the stability of the overlay in terms of changed links per sec-
ond. Because NEWSCAST nodes periodically merge their caches, an average of 35 links
change every second even though no nodes are added or removed. On the contrary, with
GNUTELLA as soon as all nodes have filled their available slots after the initialization phase,
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Figure 3.20: G - Comparison with Newscast and Gnutella (stable overlay - diameter and
cycles)

no subsequent changes are made to neighbors, hence the overlay is perfectly stable. In this
regard, the results achieved with BLATANT in scenario A (where less than 1 link is changed
every second) are satisfactory. Concerning traffic (Figure 3.21 (b)), it is possible to note
that the constant merges in NEWSCAST account for a negligible bandwidth consumption of
0.9 kbps. On the contrary, GNUTELLA requires constant probing of each node’s neighbors
by means of ping messages, thus its overall bandwidth consumption is considerably higher
than both NEWSCAST and BLATANT.

Dynamic overlay Simulations in the dynamic overlay (Figure 3.22) show that NEws-
CAST exhibits a larger increase of the average path length than GNUTELLA during the
dynamic phase of the simulation. Moreover, the diameter in the former is highly variable,
reaching a maximum of 18. Network dynamics significantly reduce the number of small
cycles in GNUTELLA, a phenomenon that is prevented in NEWSCAST as a result of the
constant cache merging process. In both cases, the number of edges at the end of the
simulation is reduced because the size of the network shrinks from 1281 to 1280. We note
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Figure 3.21: G - Comparison with Newscast and Gnutella (stable overlay - stability and
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a sharp increase in traffic in both algorithms (Figure 3.22 (¢)), with an increase of over 6
times in NEWSCAST (up to 6 kbps) and more than 15 times in GNUTELLA. Concerning
the former, the additional network overhead is caused by new nodes sending pings as they
join the overlay, while in the latter the increased traffic is the result of merges performed
by new nodes. Compared to BLATANT, the bandwidth consumption of NEWSCAST is still
lower, while that of GNUTELLA is significantly higher. To this extend, NEWSCAST seems
a better competitor for our approach.

3.8 Accuracy of the results

To determine the accuracy of our data, the following process has been used. For each
scenario, the results presented in this chapter refer to averages from 5 simulation runs. In
each run, measurements (such as the average path length or the number of edges) have
been taken every 1000 seconds, for a total of 44 during the simulated 12 hours of operation
of the overlay. For each measurement point, the relative standard deviation across all runs
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Figure 3.22: G - Comparison with Newscast and Gnutella (dynamic scenario)

is computed; accordingly we consider the average, as well as the maximum values of the
latter in order to characterize the overall accuracy of the data collected throughout our
experiments.

In all scenarios, the relative standard deviation for each measurement has been found to
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be very low, highlighting the stability of the algorithm and the reproducibility of results.
The average of the relative standard deviation across all measurements has also been
determined to be negligible. The following statistical information can be extracted for the
most relevant measurements:

— Average path length: the average of all of the scenario’s average relative stan-
dard deviation across all periodic measurements is 4.6%, with the highest values
being 12.2% (in the sensitivity analysis with BLATANT-R and D = 7), 11.4% (in
the sensitivity analysis with BLATANT-R and mo = 8), 10.5% (in the sensitivity
analysis with BLATANT-R and 7 = 15), and 10.4% (in the sensitivity analysis with
BLATANT-R and g = 1%). These scenarios can be considered as extreme ones, as
either the information collected by nodes was limited (as with D = 7, # = 15, or
i = 1%), or the constraints were too loose (mo = 8) to force a stable converging
behavior of the overlay optimization process.

— Edge count: the average of all of the scenario’s average relative standard deviation
across all periodic measurements is 1.66%, with the highest values being 14.2% (in
the sensitivity analysis with BLATANT-R and D = 7), and 10.6% (in the sensitivity
analysis with BLATANT-R and mo = 8).

— Graph cycles: the number and length of detected graph cycles are volatile values,
and an average relative standard deviations of 33% across all measurements has been
determined. It is noteworthy to say that the largest deviations are found in large
cycles (of length greater than 5), hence the ability of both algorithms to detect and
break small cycles is still valid.

— Traffic: the average relative standard deviation is at most 0.1% in all scenarios,
which proves that the algorithm has predictable bandwidth consumption.

3.9 Algorithm analysis

The optimization algorithm implemented by BLATANT through the Connection and Dis-
connection rules described in Section 3.3 relies on graph traversal and single-pair shortest-
path resolution algorithms. In this section, the time complexity of a centralized implemen-
tation of the algorithm and of the considered fully distributed versions is evaluated.

Centralized algorithm In a centralized implementation of the algorithm, two phases
are required: one involving the disconnection of nodes to break up cycles smaller than
the predefined threshold, and one to connect nodes in order to bound the diameter of
the network. Each phase needs to be repeated as long as either the Disconnection or the
Connection rule apply. In the first phase, all nodes are iteratively processed, the paths
between all neighbors are computed, and eventually the Disconnection rule is applied.
Conversely, during the connection phase, the shortest paths between all pairs of nodes are
computed to determine whether the Connection rule applies. Because all operations are
executed sequentially and neither phase requires the details of each path (traversed nodes)
but only the distance between nodes, a breadth-first traversal technique can be employed,
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leading to a complexity of O(N + Nm) for each distance evaluation in a network of N
nodes with at most m neighbors per node. Since each node needs to be processed, the
overall complexity of each phase is O(N?).

BLATANT-R Each node implementing BLATANT-R locally employs an approach sim-
ilar to the centralized algorithm, although on considerably smaller graphs based on local
and partial information. In particular, the size of the partial network constructed from the
cache table « is determined by the size table [|a|] and the maximum number of neighbors
per node m. Concerning the Connection rule, the complexity for evaluating the whole
table using the breadth-first algorithm is O([|a|]?m?). In contrast to the centralized solu-
tion, to safely apply the Disconnection rule the list of traversed nodes must be determined
in order to identify the master of each cycle. Accordingly, a breadth-first traversal can-
not be employed to determine the distance between neighbors of each node. Supposing
that the Djikstra ([93]) algorithm is employed instead, the worst-case time complexity to
evaluate the whole cache table is O (('y) ([|a|]m log([|a|lm) + [|a[]m)). Several efficiency
improvements can be implemented to further reduce the computational load on each node;
for example, unreachable nodes can removed from the partial graph as soon as they are
detected, reducing the time spent for subsequent distance evaluations.

BLATANT-S In contrast to the -R version, BLATANT-S determines distances solely on
the position of the elements within information vectors collected by Discovery Ants. Ac-
cordingly, the time complexity is O(l,) each time a node processes an incoming information
vector.

Through an empirical investigation of BLATANT-R we have observed a linear growth
of the processing times required by the connection phase (evaluation of distances in order
to create additional links) in relation to the size of the « table. More specifically, we
measured 0.24 ms with [|a|] = 28, 0.31 ms with [|a|] = 36, and 0.7 ms with [|a|] = 84.
Also on BLATANT-R a less-than-linear growth was found regarding the maximum number
of neighbors m, with 0.24 ms with m = 8, 0.28 ms with m = 16, and 0.29 ms with m = 24.
In this respect, it should be noted that the increase of the maximum number of neighbors
has not resulted in a significant increase in the actual edges in the network, meaning that
the majority of the nodes retained as small a number of neighbors as necessary to maintain
a bounded diameter. This phenomenon also influenced the average time spent during the
disconnection phase (evaluation of distances between neighbors in order to break small
cycles): with respect to both [|a|] and m a less-than-linear growth instead of a quadratic
one was observed. More specifically, the measured times were 0.2 ms with [|a|] = 28, 0.26
ms with [|a|] = 36, and 0.5 ms with [|a|] = 84, and 0.2 ms with m = 8, 0.22 ms with
m = 16, and 0.22 ms with m = 24 respectively. Regarding BLATANT-S the measured
growth related to an increase of [, was found to be linear, validating our formal analysis.
As expected, the processing times for both the connection and the disconnection phases
were also considerably shorter than with the -R version, ranging from 0.02 ms with [, = 15
up to 0.03 ms with [, = 45 for the connection phase, and < 0.01 ms for the disconnection
phase in all experiments up to I, = 45.
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3.10 Summary

In this chapter the BLATANT algorithm was thoroughly detailed and evaluated. By means
of a fully distributed, bio-inspired algorithm, the topology of the overlay is optimized to
bound the diameter as well as the girth. Whereas the first goal diminishes search response
times by limiting the maximum number of hops traveled by queries, the second one miti-
gates the problem of redundant message transmission by reducing actively breaking small
cycles in the overlay. The fundamental principles of the algorithm have been discussed, and
two implementations were presented. An in-depth analysis of the behavior of the algorithm
in several network conditions, conducted by means of a simulator, validates the proposed
approach and demonstrates the suitability of BLATANT for real-world deployments.
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Resource discovery is a service that allows users and applications to find the resources
shared by remote systems connected to the overlay by means of a querying mechanism.
An important aspect to define the qualities of a discovery mechanism is its ability to re-
solve queries with minimal bandwidth consumption, while providing satisfactory hit rates.
In [151], the authors identify several requirements for successful resource discovery in dy-
namic environments, such as fully decentralized operation, support for attribute-based
search, scalability and ability to cope with highly dynamic environments. In accordance
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with our view presented in Chapter 3, that dealt with the problem of constructing an
optimized unstructured peer-to-peer overlay using a fully distributed algorithm, the aim of
this chapter is to investigate efficient decentralized search methods to further exploit the
properties of such system. We thus propose a fully distributed search mechanism [53, 54|
inspired by existing techniques, especially routing indices, replication and clustering. In
this regard, our effort is to provide each node with a cache containing addresses of other
peers in the network that share similar resources or services, and forward resource discov-
ery queries toward those nodes whenever possible, in order to increase the number of hits
at minimal cost. More precisely, the presented solution builds loosely coupled clusters, and
is complementary to other techniques aimed at improving search in unstructured overlays,
such as replication, teeming and selective forwarding.

The rest of this chapter completes our review of search in unstructured peer-to-peer
systems presented in Chapter 2 with an additional discussion of similar techniques that
relate to our approach. This is followed by an overview of the proposed local caching
mechanism and by a thorough validation by means of simulations.

4.1 Enhancing semantic-aware resource discovery

Semantic-aware resource discovery exploits the information concerning both the resources
and the queries in order to improve search efficiency. Of particular interest for our re-
search are two semantic based techniques, namely routing indices [83] and clustering [114].
Furthermore, replication can be exploited to increase the likelihood of finding matching
resources and reduce search delays [195]. In this respect, the information might be ei-
ther naturally replicated, as it is the case with popular content in file sharing networks,
or proactively replicated as the result of a replication algorithm. Routing indices employ
semantic information to forward queries toward nodes that are more likely to provide the
requested service, while clustering solutions group semantically similar resources with the
goal of making forwarding more efficient as well as increasing the hit (or recall) rate once
a hit has been found.

Examples that employ semantic information to route queries include [301, 73|, where
it is suggested to use local indices to forward search queries toward nodes that are more
likely to satisfy them. The forwarding policy is normally based on satisfaction indices
that are evaluated based on past experiences, namely successful query responses. Building
on the principles of the routing indices paradigm, different propagation strategies can be
implemented, as suggested in [151]. A similar solution is employed in [227], to implement
a grid information service based on peer-to-peer technologies that uses routing indices to
direct queries toward the closest known node that might fulfill the request. Figure 4.1
illustrates an example of resource discovery querying for a resource on node E: by using
local information in the routing table, the query is first forwarded toward node B, and
finally to node R that provides a match.

In contrast to routing indices, which are concerned with query routing, clustering mech-
anisms focus on organizing and replicating information in order to group them into seman-
tically similar groups. From this point of view, an interesting and self-organized solution
geared toward grids is ANTARES [114]: by employing a swarm intelligence algorithm, clus-
ters of references to nodes sharing similar resources are created. Ant inspired mobile agents
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Figure 4.1: Resource discovery with routing indices

wander across the network, and transfer resource descriptors following a simple algorithm:
on a node, if an ant is not carrying any descriptor, it randomly picks the one that is less
similar to the others and then continues wandering; conversely, if the ant is carrying a
descriptor, it will release it with a probability proportional to the similarity between the
carried descriptor and the descriptors stored by the node. The outcome of this process
is that descriptors that are similar will be likely on the same node or on nearby nodes.
Resource discovery in ANTARES is started as a blind random walk search; when a node that
shares resources similar to what is being queried is found, the search becomes informed
and forwarding is done toward nodes that are the most similar to the target specified in
the query. The benefits of clustering are twofold: on one side during resource discovery
semantic information can be used to route the query toward a matching node; on the other
side, when a matching node is found, additional hits can be resolved nearby with limited
bandwidth consumption by contacting nodes in the neighborhood. Figure 4.2 depicts an
example of resource discovery querying for resources similar to the ones referenced by de-
scriptors stored on R: (a) the random walk process progresses toward node R, and then
(b) flooding the neighborhood allows finding additional results.

Tuster of nodes with information similar to that of R

—> Query forwarding path

(P (P)
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a) Random walk toward R b) Flooding the neighborhood of R
Figure 4.2: Resource discovery with clustering

A solution inspired by both routing indices and clustering is presented in [267]: each
node in a Gnutella-like network maintains a list of shortcuts to other nodes that share
similar interests. These shortcuts are discovered by performing searches using a flooding
protocol, and are subsequently used to find additional shortcut candidates. For resource
discovery, peers try to use the available shortcuts and fall back to flooding only if none of
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the shortcuts has the requested content. In a similar way, the solution presented in this
chapter builds on the principle of creating and maintaining local caches on each node, that
contain addresses of other nodes in the overlay that share similar resources. These caches
represent small clusters that can be exploited during resource discovery: more specifically,
when a node matching the query is found, the forwarding of the query continues for some
additional steps toward nodes in the cache, as the referenced nodes are more likely to
provide additional results. Content in the cache is obtained by means of proactive resource
discovery queries as well as by exchanging it with other nodes using an epidemic protocol.

4.2 Proactive caching

While the overlay topology maintained by BLATANT enables optimized communication
by actively bounding the maximum distance between each pair of nodes, and also by
reducing the number of redundant paths between nodes, obtaining satisfactory resource
discovery hit rates by broadcasting a query on the network still requires visiting a large
number of nodes. The aim of the proposed resource discovery approach is to increase
the hit rate by exploiting cached information in order to minimize the average bandwidth
consumed to obtain each result. Because transferring data across the overlay generates
additional traffic, we target a positive trade-off between the increased number of hits and
the additional bandwidth related to resource discovery.

4.2.1 Resource profiles

Each node in the overlay shares some information or resources with other nodes: the
characteristics of shared content can be referred to as the resource profile of a node. A
resource profile can be represented by a vector of tuples that describe the different aspects
of the resource: for example, a node in a computing grid is characterized by the services
offered, the CPU architecture, the amount of memory, etc. The information contained in
a profile need not to be static; in particular, it is possible to distinguish between static and
dynamic aspects: whereas the former are concerned with characteristics that are not likely
to change across time (as for example, the CPU architecture), the latter focus on values
that change across time (for example, the available memory, which depends on the status
of the node, the current active tasks, and the scheduling policy). Accordingly, a dynamic
caching mechanism that can take into consideration possible changes in the availability of
resources is required.

4.2.2 Profile similarity

Information in the cache contains references to nodes sharing similar contents or resources,
and are thus likely to match the same queries. In order to determine if two resource profiles
are similar we use a similarity function to express the distance between profiles as a real
value. We propose here two similarity functions, namely a cosine similarity function and
a difference vector one.
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Cosine similarity Given two nodes n; and nj, their resource profile vectors p; and p;, a
suitable scalar product operation, and a norm ||.||, we consider a cosine similarity function
A(pi,pj) € [0,1], such that

Pi-Pj 3 PiDj
Mool i o = O
A(pi,pj) =
0 otherwise

The scalar product and the norm have to be defined such that the profiles are equivalent
iff A(ps,pj) =1, and similar iff this value is close to 1 according to a user-defined threshold.

Difference vector similarity The similarity value can be simplified if values in the
resource profile map onto a discrete ordered sets. In this case, the similarity function can
be computed by first creating two vectors, one for each profile, that map the profile values
to the ordinals in the discrete domains, and then computing the maximum of the absolute
value of the components of the vector. For example, given the following discrete sets:

memory = [512M B,1GB,2GB,4GB,8GB],

cpu = [1GHz,2GHz,3GH 2]

and two resource profiles A = [2GB,2GHz| and B = [8GB,3GHz|, the resulting vectors
are:

A'=13,2],B" = [5,3]

The similarity function is then computed as the maximum absolute value of the components
within the difference vector, i.e:

maz(|A" — B'|) = maxz(|3 —5|,|2 — 3|) = max(2,1) = 2

Depending on the considered application, two resource profiles can be considered similar
if the value of the function is 1, 2, or a bigger value.

4.2.3 Similar peers cache

Each node keeps a cache table of size ¢, storing identifiers and timestamps of other nodes
with a similar profile. The timestamp is used to determine the age of an entry. The cache
is updated at regular intervals by starting proactive resource discovery queries to search
for other nodes in the network having a similar profile. Results from proactive queries are
stored in the table and replace existing entries. Similarly to routing indices, the shortcuts
contained in the cache form a second-level overlay, where each node’s neighborhood is
composed of peers with similar resource profiles. Figure 4.3 illustrates an example overlay
and the cache on node A, which contains references to nodes that share similar resources
according to the defined resource domain.
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Figure 4.3: Example overlay and detail of the local cache on node A

4.2.4 Cache merging

Maintaining up to date cache information through proactive resource discovery queries
may lead to high network overhead. We thus introduce a cache merging mechanism that
enables nodes to share their cache contents with peers having similar profiles. This avoids
flooding the network with proactive queries, in favor of a pairwise exchange of a small
number of node identifiers.

The process itself is inspired by the Newscast [159] epidemic algorithm. At regular
intervals, each node randomly chooses a peer from within its cache contents and initiates
a merging procedure. The initiating peer requests the content of the remote cache, merges
them with the local cache, and retains at most the cg,. — 1 entries with the highest
timestamp (i.e. the most recent information). Both the initiating node and the remote
node will then replace their own caches with the resulting set. Finally, the initiating
node will add the remote peer identifier, along with an updated timestamp to its cache.
Conversely, the remote peer will add the initiating node’s identifier and updated timestamp
to its cache. It should be noted that such simple merging mechanism could be replaced by
a more advanced merging scheme in future work.

4.2.5 Enhanced resource discovery

Resource discovery is performed using a limited and probabilistic flooding algorithm. Lim-
ited flooding implies that nodes keep track of received queries, and avoid forwarding queries
that have already been processed. Probabilistic flooding means that, at each step, the query
is forwarded only to a subset of all neighbors. In our approach, the subset is constructed
by uniformly sampling the neighborhood set. We consider the query as successful when at
least one node matching the query is found; conversely, each resource found counts as a hit.
Accordingly, the hit rate (recall rate) measures the percentage of successfully discovered
resources out of all matching ones.

The peer cache itself is exploited by non-proactive searches to enhance the hit rate:
when a matching resource is found, instead of stopping the search the query jumps to the
node cache and continues for an additional number of steps. In this way, there is a high
probability of reaching additional hits because of the way the cache has been constructed.

Figure 4.4 depicts an example of resource discovery exploiting the local cache. When
the query reaches node A, a match is found, hence the forwarding continues using the
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shortcuts available in the cache, leading to an additional hit on node FE.
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Figure 4.4: Resource discovery exploiting local caches

4.3 FEvaluation

We conducted a detailed experimentation of the proactive caching, and compared its per-
formance against basic resource discovery. For evaluation purposes, and in line with the
thesis evaluation scenario, a grid network has been considered. In this section the details
of the simulation tests are presented and discussed.

4.3.1 Simulation setup

Simulation of resource discovery is performed by randomly choosing both a starting node
and a search profile. A set of 5 simulation runs of 12 hours were evaluated: 5 search queries
are regularly started every 60 seconds, beginning at 30 minutes into simulation and ending
at 12 hours, resulting in a total of 3450 queries per run. The results detailed in the next
section thus represent an average over the latter number of requests.

4.3.2 Peer-to-Peer Overlay

The underyling overlay is constructed and maintained by BLATANT-S, which was chosen
for its lower network overhead compared to BLATANT-R. Similarly to BLATANT ants,
resource discovery queries also contribute in reinforcing 5 and v pheromone trails as they
propagate across the network. As with the reference scenario FO discussed in Chapter 3,
the network is bootstrapped starting from an initial random lattice consisting of 10 well-
known nodes. In the first phase of the evaluation, additional 1271 nodes connect to the
overlay, up to a total of 1281 nodes. Overlay parameters, as well as the simulated rates and
intervals of connections and disconnections are as in the reference scenario. Accordingly,
the expected average path length in the overlay is 8, although the TTL of resource discovery
queries has been set to 5 in order to highlight the benefits of the cache mechanism while
retaining a reasonable traffic overhead. To evaluate resource discovery in dynamic network
conditions, the overlay is modified at runtime by having new nodes joining the overlay
every 4 seconds in the period between 6 and 9 hours into simulations. Upon disconnection,
nodes either leave the overlay properly or abruptly.
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In order to assess the impact of different overlay management algorithms on the perfor-
mance of the proposed caching mechanism, we also experiment with topologies constructed
and maintained by NEWSCAST and GNUTELLA. Concerning the former, each node man-
ages a NEWSCAST cache table of 20 entries, which is merged with other peers every 10
minutes on average. Conversely, in GNUTELLA experiments each node maintains at most
10 neighbors (excepted for well-known nodes), and ping messages are forwarded every 30
seconds at a distance of 7 hops in the overlay to at most 4 neighbors at each step.

4.3.3 Evaluation scenarios

As our evaluation aim at assessing the performance and robustness of the proposed resource
discovery mechanism, different evaluation scenarios experimenting with different parameter
values have been considered. In particular we performed an analysis of the hit rate (also
known as recall rate), which represents the percentage of discovered resources matching
the query out of all matching ones available in the network, of the generated traffic, as well
as of the sensitivity of the algorithm toward parameter variations. Accordingly, a number
of evaluation scenarios (a listing of which is available in Table 4.2) have been simulated.
The parameters that have been considered in our analysis, as well as the default values
employed in our experiments (unless otherwise stated), are detailed in Table 4.1.

Value Description

TTL 5 Resource discovery query time-to-live (hops in the
overlay)

FW 4 Probabilistic forwarding sample size (number of neigh-
bors)

M — Int 15 Cache merge interval (in minutes)

P — Int 45 Proactive queries interval (in minutes)

C—-TTL 3 TTL while traveling within the cache (in hops)

C -FW 3 FW while traveling within the cache (number of cache
entries)

P—-TTL 4 Proactive queries TTL (in hops)

P—FW 3 Proactive queries FW (number of neighbors)

— None Replication strategy (None, one-hop, 5-hops)

Table 4.1: Summary of resource discovery evaluation parameters

By means of our evaluation we aim at assessing the influence of these parameters on
both the hit rate and the consumed bandwidth.

Scenario Focus of the evaluation

Benefits of proactive caching

Benefits of proactive caching with replication
Sensitivity

Comparison on NEWSCAST and GNUTELLA overlays

wl @Rl

Table 4.2: Summary of the resource discovery evaluation scenarios
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4.3.4 Resource profiles

Upon creation, each node is assigned a random static resource profile that does not change
during evaluation. Profiles are comprised of several fields that describe both hardware and
software properties of the machine. In particular, we consider the implemented architecture
(e.g. AMDG64, POWER, etc.), available memory, available disk space, and operating system
(e.g. LINUX, SOLARIS, etc.). Values for each field are chosen with different probability
distributions, as follows:

— Architectures are chosen according to the list published on the TOP500 Supercom-
puting Sites (www.top500.org) at the time of the writing of this thesis. The probabil-
ity distribution is as follows: AMD64 87.2%, POWER 11%, 1A-64 1.2%, sPARC 0.2%,
MIPS 0.2%, NEC 0.2%;

— Available Memory and Disk Space are both independently and uniformly chosen
as either 1, 2, 4, 8, or 16 Gigabytes;

— Operating Systems installed on each node are based on the aforementioned TOP500
list, with the following distribution: LINUX 88.6%, SOLARIS 5.8%, UNIX 4.4%, WIN-
pows 1%, BSD 0.2%.

The simulator generates resource discovery queries with random profiles according to
the aforementioned distribution, that will be matched by nodes on the overlay. To compute
profile similarity, the architecture and operating systems are considered as discriminant as-
pects, thus two profiles with different values are always considered as non similar (similarity
value equal to 0). On the other side, a similarity value can be computed for profiles with
matching operating system and architecture, using the early mentioned difference vector
similarity function. More precisely, given two resource profiles a, b, and the corresponding
values for memory and disk space amem, bmem, respectively agisk, baise we consider a similar
to b if bm% < tmem < 2 bypem and bajsk < agisk < 2 bgisk. It is important to note this

2
value for similarity is not commutative.

4.3.5 Traffic Evaluation

To evaluate the amount of bandwidth consumed by resource discovery, the following traffic
estimations have been considered:

— resource discovery queries / replications: 5 KBytes;
— resource discovery query replies: 128 bytes;

— replication: 5 KBytes per hop;

— cache merge: 1064 bits plus 176 bits/cache entry;

— ping: 704 bits (2 * (320 + 32) bits ICMPv6).

These estimations are based on the actual information carried by each ant, and include
both the size of an IPv6 header (320 bit), a UDP header (64 bit), as well as a 4 bits
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packet type identifier and 144 bits source identifier (128 bits IPv6 identifier plus 16 bits
port number). The obtained traffic results are based on an average cost over the total
number of 3450 queries, and include the overlay management, the proactive caching task
(if applicable), replication (if enabled), and resource discovery. The bandwidth consumed
by the overlay management algorithm and by proactive caching does not depend on the
resource discovery activity, and it should thus be considered as a fixed cost shared among
all queries.

4.3.6 Scenario details

The rest of this section discusses the algorithm parameters used in each scenario according
to the focus of the evaluation. A detailed overview of the default parameter values used in
each scenario is shown in Table 4.1, unless otherwise specified; the corresponding results
are presented in Section 4.4.

A - Benefits of proactive caching Scenarios A evaluate the benefits of the proposed
proactive caching scheme. In order to setup a baseline for comparison, several simulations
without caching that employ a simple probabilistic flooding protocol and different query
forwarding strategies have been performed. More specifically, we experimented both with
fixed query TTLs equal to 5 and varying number of contacted neighbors (3,4, 5,8), as well
as with TTL varying between 5 and 9 and fixed number of neighbors equal to 4. The
same experiments have been repeated with proactive caching enabled. Proactive resource
discovery queries are started every 45 minutes (P-Int), while cache merging happens on
each node with an average period of 15 minutes (M-Int). Each proactive query is forwarded
up to a distance of 4 hops in the overlay (P-TTL): at each forwarding step, 3 neighbors
are contacted (P-FW). The cache on each node stores at most 5 entries (C-size). Once a
hit is found, resource discovery queries may travel at most 3 hops in the overlay (C-TTL),
contacting 3 peers at each step (C-FW). From this set of experiments, the one employing
a forwarding strategy of 5 hops and 4 neighbors is considered as baseline for all other
scenarios, because, as it will be made clear by the results, it provides one of the lowest cost
per hit.

B - Benefits of proactive caching with replication To assess the influence of repli-
cated contents on the benefits brought by proactive caching, scenario B experiments with
two different replication strategies: one-hop replication and replication at a distance of 5
hops. While the first strategy represents a typical choice in peer-to-peer systems, the sec-
ond one is tailored for the BLATANT overlay constructed with D = 5, because the size of
cycles in the graph should enable traveling for 5 hops away from a node without following
redundant paths. The considered query forwarding and proactive caching parameters are
as in scenario A.

C - Sensitivity Whereas previous scenarios aim at assessing the improvements derived
by our proactive caching approach, sensitivity analysis scenarios focus on determining how
algorithm parameters values affect the performance of the system.
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C1 - Sensitivity to hops traveled in the cache (C-TTL, C-FW): to evaluate
the impact of cache navigation strategies we conduct several experiments with dif-
ferent C-TTL and C-FW. The value of C-TTL is changed from the default 3 hops,
to 2 and 5 hops, whereas the C-FW is changed from the default 3 neighbors, to 1, 2,
and 5.

C2 - Sensitivity to the cache merge interval (M-Int): cache merges enable
information sharing between nodes, and help cleaning old entries from caches, thus
preventing references to missing nodes that have already left the network. We assess
the performance of the algorithm pertaining to the frequency of merges by varying
the merge interval from the default of 15 minutes to 7m 30s, 30m and 60m.

C3 - Sensitivity to the proactive query interval (P-Int): proactive queries are
the primary mechanism used to update the cache. We gauge the benefits of more
or less frequent proactive querying by experimenting with different intervals, namely
15m, 30m, 45m (the default value used throughout the rest of the experiments), and
1h 30m.

C4 - Sensitivity to the proactive query spread (P-TTL, P-FW): this sce-
nario experiments with different forwarding strategies concerning proactive queries.
Specifically, we change the value of P-TTL from the default of 4 hops to 3 and 5,
and the value of P-FW from 3 neighbors to 2 and 4.

C5 - Sensitivity to network stability: all previous experiments are conducted
on a network with dynamic characteristics, where the overlay is modified at runtime
by having new nodes joining the overlay every 4 seconds in the period between 6
hours and 9 hours into simulations. In this set of simulations we aim at assessing
the influence of such network dynamics on the performance of resource discovery. In
particular, the results obtained in scenario A are dissected to obtain average results
before the dynamic phase (i.e. before 6 hours in to simulation), during the dynamic
phase (i.e. between 6 and 9 hours into simulation), and after the dynamic phase (i.e.
after 9 hours into simulation).

D - Comparison with NEWSCAST and GNUTELLA overlays Similarly to scenario
A, the improvements in the hit rate introduced by proactive caching are evaluated in
two different overlays, namely NEWSCAST and GNUTELLA, to assess the influence of the
selected overlay on the behavior of our solution.

4.4 Results

Based on the previously discussed evaluation scenarios and having detailed the considered
parameters, we present and analyze here the corresponding results, which aim at assessing

the efficiency of the proposed resource discovery approach and the sensitivity of the caching

algorithm to variation of parameters. In the presented graphs, experiments marked with
a * indicate that the baseline experiment’s parameters have been used.
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4.4.1 A - Benefits of proactive caching

As shown in Figure 4.5 (a) our proactive caching strategy significantly improves the hit rate,
which is doubled in the 5/3 (i.e. TTL=5, FW=3) and 5/4 query forwarding strategies,
and accounts for about 40% of the hits in other experiments. Cache merges generate a
negligible part of the traffic (6 KBytes per query), whereas the impact of proactive queries
on the network cost is about 10% (Figure 4.5 (b)), and totals about 1 MByte per query. The
traffic generated by resource discovery queries forwarded on the overlay slightly increases
when caching is enabled, because of the additional forwarding steps that are performed
within the cache. The benefits of proactive caching are noteworthy in the 5/4 experiment,
where the hit rate achieved with caching matches that of the 5/5 experiment without
caching, but with an overall query cost reduced by 650 KBytes per query.
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Figure 4.5: A - Benefits of proactive caching

4.4.2 B - Benefits of proactive caching with replication

As shown in Figure 4.6 (a), replication improves the query hit rate by increasing the odds
of finding results in the overlay. In this regard, one-hop replication provides the best hit
rate, both with and without caching. Even with replication, proactive caching improves
substantially the performance of resource discovery: in particular, the hit rate increases
from 13%, without neither replication nor caching, to 45% when both are employed. As
illustrated in Figure 4.6 (b), the cost of proactive caching is comparable to that of replica-
tion, and the improved performance accounted to caching remains at the same levels across
the different replication strategies. This result enables us to claim that the set of results
obtained from the cache overlay and that of results from replicas in the overlay are disjoint,
thus the benefits of caching are independent from the replication strategy employed.

4.4.3 C1 - Sensitivity to hops traveled in the cache (C-TTL, C-FW)

Figure 4.7 (a) shows the impact of different cache navigation strategies (i.e. different C-
TTL and C-FW) on the hit rate and the bandwidth required for each result (cost per hit).
From the analysis of the results it is clear that the more nodes are visited through the cache,
the higher the hit rate becomes. Nonetheless, by focusing on the cost per hit, it emerges
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Figure 4.6: B - Benefits of proactive caching with replication

that the best strategy involves forwarding the query for just one hop in the overlay, to all
nodes referenced in the cache (1/5). This result highlights the fact that similar peers have
a higher probability to remain close to a node in the cache overlay, thus the advantages of
letting the query be forwarded farther in the cache do not scale proportionally with the
distance traveled.
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Figure 4.7: C1 - Sensitivity to hops traveled in the cache (C-TTL, C-FW)

4.4.4 C2 - Sensitivity to the cache merge interval (M-Int)

Cache merges allow for increasing the amount of information stored in the caches with a
lower bandwidth consumption than proactive queries. With cache merges peers share the
discovered resources and remove old entries from the cache, which could point to missing
nodes. Nonetheless, as shown in Figure 4.8, changing the merge frequency does not result
in significant improvement or degradation of the resource discovery performance, although
a slight benefit is observed when the merge interval is below or equal to 15 minutes. As the
merging process consumes a negligible amount of bandwidth, more frequent cache merges
have no negative impact on the network overhead and should be favored.
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Figure 4.8: C2 - Sensitivity to the cache merge frequency (M-Int)

4.4.5 C3 - Sensitivity to the proactive query interval (P-Int)

As shown in Figure 4.9 (a), more frequent proactive querying increases the hit rate, sig-
naling that better information is stored in the cache. However, a counter-effect of shorter
intervals is an increased cost affecting each query. The difference between the strategies
concerning the hit rate is nonetheless minimal, varying from 23% when queries are started
every 1h 30m to 25% when the interval is reduced to 15m. Pertaining to the network over-
head, from Figure 4.9 (b) it is evident that more frequent proactive queries substantially
increase the overall traffic.
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Figure 4.9: C3 - Sensitivity to the proactive query frequency (P-Int)

4.4.6 C4 - Sensitivity to the proactive query spread (P-TTL, P-FW)

By letting proactive queries travel deeper in the network, more hits can be found, hence
better cache contents are collected. Results depicted in Figure 4.10 show nonetheless that
the small benefits of increased proactive query P-TTL and P-FW do not compensate for
the additional bandwidth consumption.
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Figure 4.10: C4 - Sensitivity to the proactive query spread (P-TTL,P-FW)

4.4.7 C5 - Sensitivity to network stability

The stability of the network, in terms of frequency of connections and disconnections of
nodes, influences significantly the outcome of resource discovery operations. In particular,
in an unstable network queries may get discarded if the node that currently processes them
disconnects from the network. Additionally, cache contents may refer to nodes that have
already left the overlay, which hinders the benefits of cache forwardings. In previous sce-
narios the network conditions were modified during the simulation, with new nodes joining
the overlay every 4 seconds in the period between 6 hours and 9 hours into simulations. In
this scenario we consider the three phases of previous experiments separately, namely by
analyzing the stable one before 6 hours into the simulation, the unstable one from 6 hours
to 9 hours, and the phase after the unstable conditions from 9 hours until the end of the
experiment (12 hours). As expected, Figure 4.11 shows that the best hit rate (27%) can be
achieved in a stable network; on the contrary, during the dynamic phase of the simulation,
unstable network conditions lower the hit rate to 17%, as well as increasing the cost per
hit to about 90 KBytes. After the completion of unstable conditions, the performance of
resource discovery in terms of hit rate and cost per hit quickly return to satisfactory levels.
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Figure 4.11: C5 - Sensitivity to network stability
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4.4.8 D - Comparison with NEWSCAST and GNUTELLA overlays

This last set of experiments aims at judging whether the benefits of the proposed proac-
tive caching scheme can be maintained on other peer-to-peer overlays. The NEWSCAST
and GNUTELLA scenarios replicate the same resource discovery settings as the baseline
experiment, although with varying forwarding strategies are employed.
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Figure 4.12: D - Comparison with NEWSCAST (without caching)

NEwscAST During the simulations, the observed average path length in overlays main-
tained using NEWSCAST was between 5 and 6 during stable network conditions and around
8 in unstable conditions. Although these values are lower than the ones registered for
BLATANT-S, the hit rate achieved with (Figure 4.13) or without (Figure 4.12) caching is
lower than the latter. The reason for these results is the fact that NEWSCAST topologies
contain a larger number of links and redundant paths: if a query is forwarded through
such paths, nodes that have already been visited are encountered, thus worsening the per-
formance of resource discovery. A similar issue can be observed with proactive caching
queries, whose traffic is higher with NEWSCAST than with BLATANT-S. However, it is
interesting to note that the contribution of the cache mechanism to the hit rate accounts
for a similar percentage with both overlays, namely around 7% in the 5/3 experiment and
15% in the remaining experiments.

GNUTELLA Asshown in Figure 4.15, the bandwidth required to maintain the GNUTELLA
overlay is considerably higher than with BLATANT-S. This negatively influences the overall
cost of the resource discovery process. Moreover, the hit rate in the GNUTELLA overlay is
lower than with BLATANT-S in all but the 5/8 scenario, both with or without caching.
However, as observed with NEWSCAST, the contribution of the cache mechanism to the hit
rate accounts for a similar percentage with both overlays.

4.5 Accuracy of the results

The presented data refer to an average over 5 simulation runs. For the hit rate and the cost
per query, an average over a total of 17150 queries over all runs in each scenario was con-
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Figure 4.15: D - Comparison with GNUTELLA (with caching)

sidered. The observed relative standard deviations are minimal and do not invalidate our
findings. More specifically, the average relative standard deviation for the hit rate across
all scenarios was 2.52%, and for the hit rate contributed by the cache 1.63%. Concerning
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network traffic, the obtained relative standard deviations for the query cost and the hit
cost are 1.44% and 2.16% respectively.

4.6 Summary

In this chapter we presented a technique to improve resource discovery in unstructured over-
lays using local shortcut caches. Caches are maintained by periodically executing proactive
resource discovery in order to retrieve identifiers of other nodes with similar resource pro-
files, that are thus likely to fulfill the same queries. To further improve the performance
of our system, while limiting the network bandwidth consumption, we incorporated in our
approach epidemic exchange of information between caches. Resource discovery queries
are broadcasted on the network using a probabilistic flooding protocol; when a matching
node is reached, search continues through cache shortcuts, providing additional results
with limited cost. We evaluated our approach through extensive experimentation and as-
sessed its merits compared to traditional flooding methods. We have been able to realize
improvements in the hit rate with little impact on the generated traffic. Furthermore, an
analysis of the benefits of our scheme on different peer-to-peer overlays proved its inde-
pendency and validated its applicability on diverse peer-to-peer overlays with consistently
substantial improvements of the hit rate.
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Previous chapters have dealt with the problem of connecting remote sites by means
of a peer-to-peer overlay as well as with information retrieval. Building on the solutions
that we have accordingly introduced, in this chapter we consider the problem of efficiently
exploiting the computational power of loosely interconnected computers. The term that is
used to define such large scale distributed systems devoted to solving massive computing
tasks is grids. In this context, grid computing refers to all activity carried on a grid.

Grid computing leverages the capabilities of a large number of geographically dispersed
sites by lowering the barriers of entry for both exploiting and contributing resources [119].
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Grids can be used to solve computationally intensive problems that would not be efficiently
solved by a single resource, possibly because of time or space limitations. In this respect,
a grid ideally provides a flexible infrastructure that scales efficiently as the number of
participating resources increases [81]|. In contrast to peer-to-peer networks, grids consist
of more powerful resources and better connected infrastructures, and rely on persistent
management services [116]. A widely accepted notion of the grid considers it as a pool of
federated resources within distributed virtual organizations that manage accessing policies
and provide transparent on-demand computing [120, 119]. Grids have been successfully de-
ployed in several scientific scenarios [72], and have attracted a noteworthy research stream
aimed at improving the underlying infrastructures in terms of accessibility [194], efficiency
[125] and reliability [165].

As pointed out in [253], effective grid computing depends on how efficiently tasks are as-
signed to available resources. Grid schedulers must decide which resources to schedule a job
on, based on the available information about their status. In this regard, grid scheduling
and allocation strategies must conform to the demands of the users (i.e. QoS agreements
such as response time, cost, etc.), and balance them according to the usage policies set
by resource providers (i.e. security, execution efficiency, resource utilization, etc.). Grid
scheduling complexity is further exacerbated by the fact that there exist two levels of op-
eration, namely local-scheduling and meta-scheduling. More specifically, local-scheduling
is concerned with managing local tasks’ execution policies and resources on every com-
puting node, whereas meta-scheduling provides high-level coordination and orchestration
between different local schedulers by assigning tasks to the appropriate computing nodes,
typically within a virtual organization. From this point of view, in order to achieve optimal
scheduling at both levels, the trade-off between fulfilling the requirements set by local usage
policies, and by virtual organizations must be addressed. In this regard, meta-scheduling
is often hindered by the limited availability of up-to-date information about grid nodes,
which can result in less-than-optimal decisions.

To satisfy the aforementioned issues, currently deployed grid infrastructures [118, 243|
rely on centralized or hierarchical schemes to support all the activities required to run
the grid: resource discovery, resource and data management, meta-scheduling, as well as
security services. The business requirements imposed by virtual organizations inherently
support such an organizational model, although it is important not to neglect the concrete
demand for flexible, autonomic, and self-manageable grids, in order to reduce deployment
costs, increase reliability, and meet dynamic users’ needs [23].

Grid systems have an inherent heterogeneous, dynamic and distributed nature [37];
as noted in [164], current designs must face several challenges that currently limit the
prospects and full benefits of grid computing. Among the concerns highlighted in [164],
our research focuses on problems related to schedulers’ interoperability and to reliance
on centralized meta-scheduling solutions. In this regard, we aim at enabling fully decen-
tralized meta-scheduling to effectively cope with the challenges that raise barriers to a
wider adoption of grids. Our vision is supported by the multitude of network applications
that have already recognized and exploited the advantages of distributed and decentralized
approaches. Recent advances in the underlying network technologies (i.e. ubiquity, link
bandwidth, etc.) also contribute towards this direction, and an established shift toward de-
centralized solutions has been observed also within grid architectures, with the emergence
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of decentralized resource discovery mechanisms [142, 259], fully distributed load-balancing
solutions [61], and decentralized meta-scheduling algorithms [272].

In agreement with our vision of a grid supported by decentralized services, this chapter
presents a fully distributed meta-scheduling protocol, named AR#A, that supports coordi-
nation between nodes to enable efficient global dynamic scheduling across multiple sites.
The meta-scheduling process is performed online, and takes into account the availability
of new resources as well as changes in actual allocation policies. Moreover, the proposed
approach aims at addressing the scalability and adaptability of grids, to optimally exploit
dynamically changing grid resources. Scalability concerns both the size of the grid and
the actual load. On one side new grid nodes must seamlessly merge into the grid system;
on the other side, jobs must be distributed over all suitable nodes to avoid hot spots, as
long as requirements are met. We refer to adaptability as the ability of scheduling and
rescheduling tasks according to global or local scheduling policy changes. In this respect,
a balance between adaptability and stability is required to avoid coupling situations that
have an adverse effect on performance,

5.1 Grid Meta-Scheduling

The benefits of large-scale distributed computing largerly depend on the ability of the grid
middleware to manage large sets of heterogeneous resources, and perform optimal task
allocation on these resources. From this point of view, in order to meet the expectations
users and resource owners, grid scheduling must allocate jobs on the most suitable machines
and avoid overloading just a few of the most capable ones. To this extent, meta-scheduling
services play an important role that delineate the capabilities and performance of a grid
infrastructure.

This chapter focuses on decentralized scheduling mechanisms, namely by enabling fully
distributed meta-scheduling across heterogeneous nodes, while additionally providing dy-
namic load-balancing support by rescheduling jobs across nodes whenever possible. To
better understand the issues raised by grid job allocation, in this section we review related
work concerning both meta-scheduling and load-balancing, and discuss the transition from
centralized approaches toward decentralized ones.

While fully decentralized cooperative grid solutions bear advantages over their central-
ized counterparts, interoperability of the diverse systems involved is often hindered by in-
frastructural or organizational problems, such as lack of standardization [112]|. Although a
number of projects have been started to promote collaboration between projects, and to im-
plement standards for facilitating the communication between different platforms [230, 44],
interoperability remains one of the open issues for future generation grids [220, 110]. As
discussed in [134], to alleviate these issues, collaborative scheduling solutions should avoid
enforcing control over local resources by establishing a clear separation between global and
local resource management. Furthermore, resource management and scheduling should rely
on adaptive decision-making in order to cope with unprecedented situations. Moreover,
meta-scheduling should also be concerned with load balancing through dynamic reallo-
cation of jobs. Unfortunately, whereas task allocation on a single site benefits from the
availability of local, complete, and precise information about available resources, decen-
tralized approaches have to tradeoff between information and network traffic.
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Centralized Scheduling Traditional grid models [118, 243] rely on centralized or hi-
erarchical meta-schedulers that have a global view of the resources shared on the grid
or by their virtual organization. Research has come up with very efficient centralized
meta-scheduling mechanisms [17] that can take full advantage of a global view of the grid
and provide optimal allocation of tasks on resources. It should be noted that centralized
scheduling does not necessarily require a corresponding central information repository, but
can rely on distributed information systems [232]. Nonetheless, these approaches still con-
tain bottlenecks for scalability of the system, as well as single points of failure that may
affect the robustness of the grid as a whole. An extensive literature review of centralized
scheduling mechanisms is outside the scope of this work; an in-depth analysis of related
state-of-the-art can be found in [96].

Decentralized Scheduling The design of decentralized and adaptive scheduling algo-
rithms is considered in [256], with nodes performing load-balancing within a limited set
of neighbors. Two strategies are proposed, namely transferring jobs at precise intervals
or depending on their arrival time; both strategies have the goal of achieving similar to-
tal execution time on all nodes. In the direction of reducing the average response time,
[112] proposes an adaptive decentralized mechanism that employs an evolutionary fuzzy
algorithm to select the best site for job delegation among the set of all possible candidates.

The ORGANIC GRID [68] introduces a novel paradigm that redefines the grid as self-
organized biologically inspired complex system of agents providing decentralized scheduling
for heterogeneous tasks on a large number of resources. Nodes are organized as a tree, with
the root being the job originating node, and faster nodes located closer to it; nodes can
push tasks down the tree depending on the actual load of their children.

Collective intelligent behavior of mobile agents has been also exploited in [61] to sup-
port grid task load-balancing in a fully distributed environment. Job requirements and
resources are profiled using a performance analysis tool called PACE [217], and matched
to appropriate resources by the agents. Recognizing the importance of decentralization and
self-organization for the future of grid systems, [104] presents a distributed grid schedul-
ing framework where nodes group into communities according to resource similarities and
disseminate their actual state. The scheduling process is decentralized and makes use of
information about remote nodes in order to find the best resources to fulfill a request.

The distributed meta-scheduling model presented in [272] operates on the principle of
submitting a job to the least loaded sites and subsequently revoking it on all but the one
that has commenced its execution. An evident drawback of this model is the overloading
of a large number of schedulers with jobs that are frequently cancelled. Another decentral-
ized scheduling and load-balancing technique is detailed in [25], which depends on nodes
retaining jobs or submitting them to their neighbors according to a heuristic on local load.
A different approach is taken in [179], where the selection of a target neighbor for job
delegation is driven by the available bandwidth; this is made possible by the adoption of
a simplistic model that considers all tasks as identical and focuses on the time required to
transfer data.

The potential of applying peer-to-peer technologies to support decentralized grid schedul-
ing is highlighted in [109], with a fully distributed solution where nodes perform a gossip-
based exploration of the network for the purpose of generating an optimal schedule on
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the discovered resources. Peer-to-peer gossiping protocols are also employed in [103], but
with the goal of disseminating the state of the available resources across the grid; this
information is cached by remote nodes and used to optimally allocate incoming jobs.

The GRIDIS [297] scheduling algorithm employs a peer-to-peer communication model
that enables resource providers to bid for the delegation of a job. Job requests are submitted
to the grid through a portal that broadcasts them in an unstructured peer-to-peer overlay
network. The objective of GRIDIS is to satisfy both resource consumers and providers, by
ensuring high successful execution rates, respectively fair allocation of benefits. Similarly to
GRIDIS, the work presented in [99] makes use of a structured peer-to-peer overlay network
to discover nodes wishing to carry out a job; furthermore, rescheduling is exploited to avoid
starvation of jobs failing to be executed.

In contrast to the aforementioned research approaches, we aim at supporting fully
distributed task meta-scheduling by means of a lightweight coordination protocol which
takes into account the dynamicity and heterogeneity of resources. Among the distinctive
features that differentiate our solution, we highlight the fact that it does not require detailed
scheduling information from other nodes, and that it promotes asynchronous peer-to-peer
interaction between nodes as well as overall self-organization. In this regard, we assert that
our solution contributes to the previously mentioned drive towards flexible and autonomic
grids.

5.2 ARzA Protocol

The ARZA protocol [55] aims at providing fully distributed task meta-scheduling across a
heterogeneous grid. The name ARZA (air in Ttalian, denoting the aim to be lightweight)
comes from the initials of the different message types defined in our protocol, namely
REQUEST, ACCEPT, INFORM, and ASSIGN (Table 5.1). An additional STATUS
message is employed by the protocol to support synchronized execution of interdependent
task pools in advance reservation scheduling. In the following we detail the operational
phases of the protocol, as well as the information exchanged between nodes by means of
the aforementioned messages.

5.2.1 Assumptions

One of the fundamental design principles of the AR#A protocol is that of being agnos-
tic to schedulers, namely not requiring nor depending on any particular local scheduling
policy. Moreover, to emphasize the idea of promoting fully distributed operation, it is
assumed that grid nodes are connected by means of a peer-to-peer overlay network. The
algorithm nonetheless requires that direct communication between any pair of nodes could
be established. According to these premises, and for evaluation purposes, we base our
experiments on a self-organized overlay maintained by BLATANT-S, as it accounts for a
lower bandwidth consumption than the -R version.

ARZA supports all phases of the job execution, from submission to completion, and
exploits the time-to-execution to perform dynamic rescheduling of jobs across grid nodes,
thus achieving better global throughput and load-balancing. To obtain resources for job
delegation, a specific REQUEST message is defined by the protocol: this task can either
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be accomplished by processing such message on a suitable grid information system or
by broadcasting it on the network using a dedicated fully distributed resource discovery
protocol. Because of its fully distributed design, job submission can be performed from
any node; furthermore, execution may occur on any node whose resource profile matches
the job requirements. For simplicity, we do not allow nodes to decline incoming jobs
that have been already accepted, and while every node may hold several jobs within its
scheduling queue, only one job at a time can be executed. Batch jobs are assumed to be
independent, while advance reservations can be made for jobs composed of interdependent
tasks. Moreover, to avoid checkpointing issues, preemption and migration of running jobs
are not considered, while security issues are also out of the scope of this research.

To describe resource and job profiles the protocol does not specify any particular for-
mats: actual implementations may choose to use one of the available job description
schemas such as JSDL [115]. In accordance with this view, also the matching logic deter-
mining whether a task can be executed on a specific node is left to specific implementations,
which may choose to define job acceptance rules based not only on profile matching but
also according to security, or accounting policies. Finally, execution of tasks and transmis-
sion of task-related data between nodes are not within the focus of this research. In this
regard, the evaluation provided in the following will assume that jobs are responsible for
transferring the required data on the node where execution takes place.

Table 5.1: Protocol Messages and Fields
ACCEPT

‘ Node’s address ‘ Job UUID ‘ Cost ‘

REQUEST

‘ Initiator’s address ‘ Job UUID ‘ Job Profile ‘
INFORM

‘ Assignee’s address ‘ Job UUID ‘ Job Profile ‘ Cost ‘
ASSIGN

‘ Initiator’s address ‘ Job UUID ‘ Job Profile ‘
STATUS

‘ Job UUID ‘ Status value ‘

5.2.2 Job Submission Phase

The first phase of the protocol covers the submission of jobs and their initial handling
by the node that each job was submitted to. Because the protocol aims at achieving
optimal grid-level meta-scheduling, submitting a job to a particular node does not ensure
that execution will take place locally, unless such a requirement is specified in the job
description.

To univocally track jobs scheduled on the grid, each job is assigned a universal unique
identifier (UUID). Nodes receiving job submissions from users or applications are referred to
as initiators for these jobs. In order to find candidates for the execution of a job, initiators
issue resource discovery queries across the grid by means of REQUEST messages. These
messages can either be sent to a grid information system or broadcasted to a random
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subset of nodes of a peer-to-peer overlay. The submitting node then waits for a predefined
timelapse for incoming query replies. When pools of interdependent tasks are submitted
to a grid node, each task is independently managed by means of separate REQUEST
messages.

Besides the initiator’s address and the job UUID, a REQUEST message contains the
profile of the resources required to carry out the job, which also specifies an Estimated
job Running Time (ERT) according to a grid-level accepted baseline regarding computing
power. The estimated running time can be computed by means of a job profiling tool
such as PACE [217]. Job profiles may also define additional job execution constraints, for
example to prevent execution of a job outside the boundaries of a virtual organization.

5.2.3 Job Acceptance Phase

In a fully distributed implementation, upon reception of a REQUEST message, a node
determines whether the requirements of the job profile match its own resources. If the
request cannot be satisfied, the message is further forwarded on the peer-to-peer overlay,
otherwise a cost value for the job based on actual resources and current scheduling is
computed. The cost information is sent back to the job’s initiator by means of an ACCEPT
message. If the REQUEST message is processed by the grid information system, the
latter would either reply according to available information or forward the message to each
matching node, which would then reply directly to the job initiator.

The cost value depends on the adopted local scheduling state, with lower values being
used to indicate better offers. The initiator evaluates incoming ACCEPT responses, and
selects the best qualified node (i.e. the node providing the lowest cost). The job is delegated
to the latter, which is referred to as the current assignee, by sending an ASSIGN message.
In order to keep track of the scheduling status of each job, the initiator and the assignee
both store a reference to each other: whenever the assignee changes, the initiator is notified.

Currently, three cost functions have been considered, namely Estimated Time To Com-
pletion (ETTC), Negative Accumulated Lateness (NAL) and Total Delay Time (TDT) for
batch, respectively deadline and advance reservation schedulers. As we assume that dead-
line scheduling offers and advance reservations ones are not mixed with batch ones, values
produced by different functions do not necessarily need to be comparable.

Estimated Time To Completion (ETTC) This function defines the cost for a job j
as:

ETTC,os(j) = ETTC;

where ETTC} corresponds to the relative time that the job is expected to finish ac-
cording to the local scheduling policy and actual load of the node (determined by the
scheduling queue).

Negative Accumulated Lateness (NAL) Targeted at deadline scheduling algorithms,
it computes the cost for a job j and an existing local scheduling queue @ as follows:
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NALcost(j) = Z 5(job,Q’) * "onb’
job € Q'

with
Q' =Qu{j}
Vjob = deadline;q, — ETC)op
—1 7jop =0,V job € S,
5(]'01,75): 0 ’onbZO/\HZUES Do <0,
1 otherwise

ETCj refers to the absolute time that the job is expected to finish according to the
local scheduling policy and the actual load of the node (determined by the scheduling queue
Q'), while deadline;q is the upper time limit for job completion; hence ;0 represents the
lateness of the job. If no deadline is missed, the cost function returns a negative result,
with smaller values indicating better scheduling solutions.

Total Delay Time (TDT) This function is used to evaluate the opportunity of allocat-
ing a time-slot in advance reservation scheduling. The cost value is determined by the sum
of all the estimated delays for scheduled jobs; if the sum is zero, the cost is the negative
value of the sum of free time between jobs in order to have schedules with longer idle times
represent better choices. For an existing local scheduling queue ) the cost is thus:

—idleg v =0
TDTeos Q = { ’
Q=1 4 7Q # 0
with
idleg = sum of idle time between scheduled jobs
Q= mam(o’ Z (ESTjOb - ARSjob))
job € @

ESTj,, = estimated job start according to local schedule

ARSop = advance reservation slot beginning time

Whereas positive values account for the inability of the node to cope with reservations,
negative values are an inverse value of the idleness of a node, hence smaller values indicate
better scheduling options.

5.2.4 Dynamic Rescheduling Phase

An important aspect of the ARiA protocol is the dynamic rescheduling of jobs. This
supports the scalability and adaptability of the meta-scheduling mechanism by enabling
job re-allocation to reflect possible changes in the state and availability of resources. This
can typically be the result of new nodes connecting to the grid, or existing jobs terminating
earlier than predicted or being cancelled.
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At the time of job assignments, assignees represent the initiators’ perceived optimal
solutions for job execution; however, it should be expected that better alternatives may
potentially arise in the future. Accordingly, the assignee attempts to find candidates
for rescheduling of jobs in its queue while their execution has not yet started. For this
purpose, INFORM messages, which are either processed by a grid information system
or disseminated across the network, are employed. Because the rescheduling process is
executed periodically, a fully distributed implementation should make use of a low-overhead
discovery protocol to avoid excessive bandwidth consumption. In our evaluation, a fully
distributed probabilistic flooding protocol is used.

The structure of INFORM messages relates to that of REQUEST messages, in that
they both contain a full description of the job’s profile. The goal of INFORM messages
is to discover nodes that might carry out the execution of the job at a lower cost than the
current assignee. For this reason, INFORM messages also carry the actual cost value, as
computed by the aforementioned cost calculation functions. Nodes will typically generate
INFORM messages for a set of jobs in their queue according to a selection mechanism.
For batch schedulers jobs with the largest waiting times are preferentially selected, for
deadline schedulers jobs with the least lateness are chosen, whereas for advance reservation
schedulers tasks with the largest delays are considered.

The behavior of a node upon reception of INFORM messages is similar to the one
concerning REQUEST messages, with the node first checking whether it can satisfy the
job’s requirements and then evaluating the corresponding cost for execution. Unlike RE-
QUEST messages, an ACCEPT reply will only be sent to the current assignee if a lower
cost can be guaranteed. Thresholds may be introduced to prevent rescheduling when the
benefit does not justify the additional overhead, for example if the execution time is only
reduced by a small fraction or if the actual job transfer time surpasses the benefit to be
gained from the rescheduling operation.

The rescheduling process is completed when the current assignee receives the ACCEPT
message and accordingly reassigns the job to the new assignee by means of an ASSIGN
message. To ease tracking of jobs, and enable failsafe mechanisms in the event of an
assignee’s crash, rescheduling actions are notified to the job’s initiator by means of a
STATUS message with value SCHEDULED.

5.2.5 Job Execution Phase

The last concern of the protocol is to manage the execution of jobs. Whereas in batch,
deadline, and simple advance reservation scheduling each job can be started as soon as it
reaches the head of the scheduling queue, the scheduling of pools of dependent tasks is more
complicated. More precisely, tasks in each pool depend on each other, and thus need to be
concurrently executed. This situation prevents scheduling of multiple dependent tasks in
the same job queue if the available resources on the node preclude their parallel execution.
Moreover, the meta-scheduling protocol must implement a mechanism to synchronize the
start of the execution of each task in a pool.

ARiA deals with this issue by means of STATUS messages: when a job is ready for
execution, the initiator is notified with a STATUS message with value READY. The
job initiator waits until all tasks in a pool are ready, and then notifies the corresponding
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Figure 5.1: Job scheduling and execution states

remote nodes with a RUNNABLE notice. Nodes receiving such notification may change
the execution state of the corresponding jobs to RUNNABLE, so that the scheduler can
begin their execution, subsequently changing their status to RUNNING. A node can also
revoke the execution of a pool, by sending a STATUS message with value REVOKE, to
the job initiator, which then relays it to all job tasks’ assignees. Jobs are automatically
revoked when a node has one task ready for execution and one or more dependent tasks
in the same queue that cannot be concurrently started. Figure 5.1 illustrates the job
execution states and all possible transitions. To prevent denial of service attacks from a
misbehaving node, each node involved in the execution of a task (initiators and assignees)
can ask for its revokation, for example if it delays other tasks for a too long period.

5.2.6 Example

To better understand the different phases of the protocol we propose here a simple example
of the submission, acceptance, and dynamic rescheduling steps of a single task job. We
consider an overlay composed of 13 nodes, depicted in Figure 5.2, and a fully distributed
implementation of the protocol.

At step 1, a job is submitted to node A, which becomes the initiator of that job and
is responsible for the initial delegation. Next, a resource discovery operation is started by
sending REQUEST messages on the network (step 2). All nodes matching the job profile
compute the estimated cost according to their scheduling policy, and reply to the initiator
with an ACCEPT message: in this example we suppose that replying nodes are B,F, and
P (step 3). The lowest cost offer (in this example, the one submitted by node B) is chosen
by the initiator at step 4, and the job is assigned by means of a ASSIGN message. The
assignee (B) replies with a STATUS message with value SCHEDULED to signal that
the job has been correctly scheduled.

Because the resource availability on the network may change, before the start of the
execution, B tries to reschedule the job, by searching for lower cost offers: accordingly,
INFORM messages are transmitted on the network (step 5). Each receiving node checks
whether its resource profile matches the job description and whether it can provide a
lower execution cost. If both conditions hold, an ACCEPT message is sent to the current
assignee (step 6), and the rescheduling process is concluded by transferring the job to the
new assignee (step 7), and notifying the initiator of the change of assignee by means of a
STATUS message from Y with value SCHEDULED. As long as execution of the job has
not yet commenced, several rescheduling operations can take place.
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Figure 5.2: Job submission, acceptance and rescheduling example

5.3 Evaluation

To evaluate the behavior of the ARzA protocol in a grid environment, an in depth analysis
by means of simulations was performed. To take into account all the characteristics of
the meta-scheduling problem, several aspects are considered: scheduling optimality, adap-
tiveness, scalability, consumed network bandwidth, and load-balancing. More specifically,
our evaluation focuses on measuring the average total execution time, the traffic generated
by protocol messages, the number of idle nodes, of delayed jobs in advance reservation
scheduling, and of missed deadlines. From this point of view, our analysis aims at both
assessing the qualities of the dynamic meta-scheduling protocol, as well as providing a
sensitivity analysis of the main protocol parameters, in order to understand their influence
on the aforementioned assessment metrics. This section introduces the evaluation setup
and the details of each of the considered scenarios, a summary of which can be found in
Table 5.2.

All scenarios are evaluated on a custom event-based simulation platform, where com-
munication latency between nodes is based on realistic timing as in Chapter 3. For each
scenario 5 simulation runs were performed.

5.3.1 Overlay network

We assume that grid nodes are connected by means of an unstructured peer-to-peer overlay,
and that nodes trust each other and interact directly among them. Accordingly, we employ
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Scenario  Focus of the evaluation

Benefits of dynamic rescheduling with batch schedulers
Robustness and load balancing capabilities

Scalability

Benefits of dynamic rescheduling with deadline schedulers
Benefits of dynamic rescheduling with advance reservation

N wNeNveil g

Sensitivity

Table 5.2: Summary of the meta-scheduling evaluation scenarios

an overlay of 500 nodes constructed and maintained using BLATANT-S. The algorithm
parameters values are as defined in the baseline scenario presented in Chapter 3, although
for our evaluation purposes the network is maintained stable; an exception is the scenario
focusing on the scalability, where an expanding overlay growing up to a size of 700 nodes
is employed.

5.3.2 Grid resources

Evaluation of the protocol is conducted on an overlay of heterogeneous resources, where
the capabilities of each node are determined by its profile. Resource profiles are comprised
of different fields that include both hardware and software properties of the machine.
Similarly to the evaluation of resource discovery presented in Chapter 4, the following
aspects have been considered: the implemented architecture (e.g. AMD64, POWER, etc.),
available memory, available disk space, and operating system (e.g. LINUX, SOLARIS, etc.).
Upon initialization, the simulator randomly assigns a profile to each node according to a
probability distribution defined as follows:

e Architectures are chosen according to the list published on the TOP500 Supercom-
puting Sites (www.top500.org) at the time of the writing of this thesis. The probabil-
ity distribution is as follows: AMD64 87.2%, POWER 11%, 1A-64 1.2%, sPARC 0.2%,
MIPS 0.2%, NEC 0.2%;

e Available Memory and Disk Space are both independently and uniformly chosen
as either 1,2,4,8, or 16 Gigabytes;

e Operating Systems installed on each node are based on the aforementioned TOP500
list, with the following distribution: LINUX 88.6%, SOLARIS 5.8%, UNIX 4.4%, WIN-
pows 1%, BSD 0.2%.

To account for heterogeneity in the computational capabilities of each node, each sys-
tem has an associated real value performance index p between 1 and 2, that compares its
computing power to a baseline reference. The latter corresponds to the hardware configu-
ration used to calculate the Estimated job Running Time (ERT). The simulator uses this
index to derive the Estimated job Running Time on a particular node (that is referred to
as ERTP). More specifically, the ERT? is defined as the ERT divided by the performance
index p.
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5.3.3 Grid jobs

The resource requirements for submitted jobs are defined according to the characteris-
tics defined by resource profiles. User submitted jobs are created by means of a random
generator, and submitted to random nodes in the overlay that subsequently initiate their
delegation by sending REQUEST messages on the network. Each job is characterized by
parameters defining the resources required to execute the job. This information is matched
against grid resources profiles, and includes the required architecture, memory, disk space,
and operating system. The values of each job parameter are randomly chosen. To evalu-
ate the impact of the distributions of requests on the performance of the meta-scheduling
mechanism, two probability distributions have been considered: the first one, considers the
same probability distribution as used for node profiles, while the second one is based on a
uniform probability distribution. Whereas the former distribution is employed in all of our
evaluation scenarios, the latter is considered only for a sensitivity analysis. Job descriptors
also define an ERT, which is randomly assigned according to a normal distribution N(u, o)
with u = 2h30m, o = 1h15m, using a lower bound of 1h and an upper bound of 4h to
avoid extreme cases.

In a real grid, the ERT only provides a rough estimation of the actual job running
time. Accordingly, in our simulation each node computes an Actual Running Time (ART)
by purposely introducing estimation errors. The ART for a job j (which is unknown until
execution completes) on a node with performance index p is derived from ERT, ERT?, and
a relative error ¢ as follows:

ARTj. = ERT} +drift;.
with
driftje =U_11)* ERT) x ¢

In our evaluation we assume an accuracy of +10% of the Estimated job Running Time
(e =0.1).

Unless otherwise specified, in all scenarios jobs are submitted starting from 20 minutes
up until 3 hours 7 minutes into the simulation. A new job is submitted to a random node
in the overlay at 10 seconds intervals, resulting in a total of 1000 jobs submitted to the grid
in each scenario. For deadline scheduling scenarios, jobs’ deadlines are set to an absolute
time equal to the current time plus their ERT plus an additional random interval following
the aforementioned normal distribution, with u = 15k, o = 7h30m, hence, the deadline is
set 15 hours after the expected absolute completion time. In advance reservation scenarios,
the reservation start is set 15 hours after the submission time on average, based on the same
distribution as for deadlines. In advance reservation of task pools, each job is composed
of a pool of interdependent tasks, the size of which is chosen uniformly at random in the
range [1,4]; because of their interdependency, jobs in the same pool can be executed only
if simultaneously started.

5.3.4 Traffic Evaluation

To evaluate the amount of bandwidth consumed by the meta-scheduling protocol, the
following traffic estimations have been considered for the ARiA messages overhead:
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— REQUEST, INFORM, and ASSIGN: 5 KBytes;
— ACCEPT and STATUS: 1 KByte.

Our evaluation focuses on a fully distributed implementation of the meta-scheduling
mechanism, thus REQUEST and INFORM messages are disseminated on the network
using a probabilistic flooding protocol. Concerning broadcasting strategies, REQUEST
messages are forwarded on the network at a distance of 9 hops, to at most 4 neighbors
at each step. Conversely, in scenarios with dynamic rescheduling, INFORM messages are
generated for at most 2 scheduled jobs candidate for rescheduling every 5 minutes, and are
forwarded at a distance of 8 hops, to at most 2 neighbors at each step. These values are
based on the properties the underlying peer-to-peer overlay management algorithm and
the parameters set for its construction, and guarantee a near optimal operation without
overloading the network.

5.3.5 Local Scheduling Policies

The ARZA protocol aims at providing a meta-scheduling service that is independent of
the local scheduling policy implemented by each node. Hence, we assume that different
schedulers are available. In our simulations, the scheduling policy is randomly assigned to
each node upon creation, and in this respect, the following scheduling policies have been
considered:

e First-Come-First-Served (FCFS): incoming jobs are appended to the scheduling
queue according to the local arrival time (i.e. reception of an ASSIGN message);

e Shortest-Job-First (SJF): the scheduling order depends on the jobs’ ERT, with
shorter jobs being executed first;

e Earliest-Deadline-First (EDF): used only for deadline scheduling, this policy
prioritizes jobs with an earlier deadline (as specified in their profile);

e Fair Advance Reservation (FAR): used in advance reservation scenarios, this
policy enables the allocation of time-slots for executing a task. If collisions between
allocations happen, the earliest submitted job is given priority;

e Fair Pool Advance Reservation (FPAR): similar to FAR, this scheduling policy
supports dependency between tasks within the same pool. When a job is ready for
execution, the assignee informs the initiator by means of a STATUS message with
value READY': jobs can be started only when all tasks in the pool are ready for
execution (i.e. when the assignees receive a STATUS with value RUNNABLE).

For batch scheduling scenarios FCFS and SJF are used: these schedulers are interoper-
able because these schedulers share the same cost function (as defined in Section 5.2.3). In
our evaluations, we use the term Mized to refer to scenarios where each node is randomly
assigned a scheduling policy between FCFS and SJB. Unless otherwise specified, in our
batch scheduling experiments the Mixed policy is employed. In deadline scenarios the EDF
scheduling policy is employed; conversely, in advance reservation scenarios FAR and FPAR
are used.
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5.3.6 Scenario details

In the following we detail the goals of each evaluation scenario and the main parameter val-
ues used to assess the behavior of the protocol according to these goals. The corresponding
results are presented in Section 5.4.

A - Benefits of dynamic rescheduling with batch schedulers To quantify the
benefits that can be achieved with dynamic rescheduling, scenarios A experiment with
different local batch scheduling policies (FCFS, SJF, Mixed) and measure the average
waiting and execution times, as well as the number of completed jobs during the simulation.

B - Robustness and load balancing capabilities The robustness of the meta-scheduling
protocol is assessed by means of low and high load situations in scenarios B. More specifi-
cally, in low load situations the job submission rate is halved to one job every 20 seconds,
with jobs submitted from 20 minutes to 5 hours 54 minutes into the simulation. Respec-
tively, for high load situations the submission rate is doubled, with one submission every

5 seconds, starting from 20 minutes up to 1 hours 45 minutes into the simulation.

C - Scalability Scenarios C gauge the scalability by means of a dynamically expanding
network. Starting from the original network of 500 nodes, new nodes are added every 50
seconds starting from 1 hours 23 minutes, increasing its size to 700 nodes at approximately
4 hours 10 minutes into the simulation. These new nodes represent newly available grid
resources that can take part in the scheduling and rescheduling process. The evaluation of
these scenarios aims at determining the load-balancing effect amongst available resources
achievable by means of dynamic job rescheduling.

D - Benefits of rescheduling with deadline schedulers Concerning deadline sce-
narios, the focus of the evaluation is on the protocol’s ability to match jobs’ deadlines.
Two policies are considered: with the first, deadlines are set 15 hours after the estimated
completion time on average; with the second, the available time to complete the job is
reduced to 2 hours 30 minutes after the estimated completion time on average. All jobs in
these scenarios employ the EDF scheduler.

E - Benefits of rescheduling with advance reservation The benefits of dynamic
rescheduling in advance reservation scenarios is assessed by measuring the number of de-
layed jobs and the average delay. In this regard, both simple (one task) reservations, as
well as advance pool reservations are considered. The considered local schedulers are FAR
and FPAR, for simple reservations and pool reservations respectively.

F - Sensitivity To better understand the behavior of AR¢A under different circumstances
and to assess how main variables influence the outcome of the scheduling process, a sen-
sitivity analysis is conducted. More specifically, the following parameters and evaluation
conditions are considered:
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e F1 - Sensitivity to ERT precision: the scheduling and rescheduling decisions
depend on the estimated running time of each job. To determine the influence of the
accuracy of such an estimation we evaluate the behavior of the protocol by varying
the error introduced in the simulation. Two sets of experiments with a Mixed batch
scheduling policy are considered. In a first set of experiments, the relative error of the
Actual Running Time is increased from +£10% to £25% (e = 0.25). Subsequently,
we employ an optimistic estimation where the ERT is always lower than the actual
time, with ¢ = 0.1, and drift;. is replaced with |drift;.|). Finally, we conduct
experiments where the estimation matches the ART (e = 0).

e F2 - Sensitivity to jobs candidate for rescheduling: the number of jobs that
each node tries to reschedule at once determines the amount of INFORM messages
broadcasted on the network. The goal of this evaluation is to assess the benefits of
considering rescheduling for a different number of jobs. In particular, we change the
default value of 2 candidate jobs in the queue, to 1 and 4 respectively.

e F3 - Sensitivity to job submission node: in all other scenarios jobs are submitted
to a random node in the grid, to simulate geographically dispersed users accessing
their local grid nodes. To determine if the node that acts as job broker influences
the outcome of the scheduling process we simulate a grid where only a single node
is responsible for job submission, and compare the results regarding the average
completion time and the traffic with ones obtained for our baseline strategy.

e F4 - Sensitivity to job profiles distribution: to assess the influence of the job
profiles distribution on the scheduling performance we experiment with a uniform
distribution instead of the one matching the actual distribution of resources.

5.4 Results

Having detailed the parameters of the considered evaluation scenarios, we present and
discuss here the corresponding results. First, a discussion on the benefits of the dynamic
rescheduling mechanism of the ARi{A protocol, its scalability, and its effectiveness to ad-
dress the load-balancing problem is presented. This is followed by an analysis of deadline
and advance reservation scheduling scenarios. Finally, the results of the sensitivity anal-
ysis pertaining to different aspects of our meta-scheduling approach are discussed. The
presented job completion times refer to an average over all 1000 submitted jobs.

5.4.1 A - Benefits of dynamic rescheduling with batch schedulers

Figure 5.3 (a) shows the total execution time achieved on batch schedulers. The SJF
and Mixed scenarios demonstrate the benefits of dynamic rescheduling, although it is
noteworthy to highlight the comparative optimality of the FCFS policy without dynamic
rescheduling. This result is attributed to the fact that FCFS preserves the optimality of
the initial delegation by not modifying the scheduling order upon new submissions. On
the contrary, with SJF submission of a job with shorter ERT than already scheduled jobs
modifies the expected completion time for all jobs with longer ERT. Another interesting
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fact concerns the composition of the total job completion time of SJF and Mixed; more
specifically, while dynamic scenarios exhibit larger execution times, there is a reduction in
the completion time, which proves the effectiveness of the rescheduling phase in providing
shorter waiting times and its ability to distribute jobs to nodes based on actual waiting
queues length rather than just on computational power. Similar observations about the
benefits of dynamic rescheduling with SJF and Mixed policies can be made with regards
to the evolution of completed jobs, shown in Figure 5.3 (b).
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Figure 5.3: A - Benefits of dynamic rescheduling with batch schedulers

As illustrated in Figure 5.3 (c¢), dynamic rescheduling helps achieving better resource
utilization when using either the SJF or Mixed scheduling policies. In particular, the
number of idle nodes decreases by about 100, indicating an improved balancing of the
overall grid load.

The resulting network overhead is shown in Figure 5.3 (d): for all considered scheduling
policies the rescheduling operations double the traffic, from an average of 7000 MBytes to
14000 MBytes. The largest part of the traffic is attributed to REQUEST and INFORM
messages, whereas other messages account for only a negligible part of the overall traffic.
Although the traffic increase is important, it is compensated by the achievable benefits of
reduced execution times.
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5.4.2 B - Robustness and load balancing capabilities

The robustness of our meta-scheduling protocol in respect to the total execution time
versus the frequency of job submissions is demonstrated in Figure 5.4 (a). Even when the
submission rate is doubled from 1 job every 10 seconds (as in other experiments) to 1 job
every 5 seconds, the benefits of dynamic rescheduling are noticeable, with a reduction of
the average completion time from 3h 21m to 2h 27m. Conversely, with a slower submission
rate of 1 job every 20 seconds, dynamic rescheduling lowers the average completion time
from 2h 06m to 1h 43m.
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Figure 5.4: B - Robustness and load balancing capabilities

Figure 5.4 (b) depicts the resource utilization in all experiments. As noted in scenarios
A, dynamic rescheduling enhances the load balancing across grid nodes by making use of
about 100 nodes more. Finally, Figure 5.4 (¢) shows the overall bandwidth consumption
necessary to execute the 1000 jobs submitted to the grid. It is interesting to note that a
lower submission rate results in noticeably less rescheduling traffic (INFORM messages).
The reason behind this is the ability of starting job execution earlier because queues are less
loaded as more time passes between each submission; hence, the number of jobs candidate
for rescheduling is lowered.
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5.4.3 C - Scalability

In Figure 5.5 (a) we assess the scalability of ARiA pertaining to the reduction of the total
execution time in an expanding grid. As expected, dynamic rescheduling enables better
usage of newly available resources, and reduces the total execution time from 2h 41m to 2h
5m. As it emerged in scenarios A, the reduction of the waiting time accounts for a shorter
total completion time, although the execution time increases. This result is supported by
the analysis of the evolution of the number of completed jobs shown in Figure 5.5 (b).
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Figure 5.5: C - Scalability

The load balancing effect is demonstrated in Figure 5.5 (c¢): as the size of the network
increases, rescheduling leads to the utilization of up to 100 additional nodes. The network
traffic results shown in Figure 5.5 (d) reveal an interesting behavior of the meta-scheduling
protocol: as the network size is increased, the overall traffic generated by INFORM mes-
sages is reduced. The reason for this is the increased availability of nodes that can start
job execution sooner, thus reducing the number of rescheduling opportunities.

5.4.4 D - Benefits of rescheduling with deadline schedulers

Pertaining to deadline scheduling, important performance metrics are the number of dead-
lines, the lateness (i.e the time left from completion to the deadline), and the missed time
(i.e. the time, if any, past the deadline). As shown in Figure 5.6 (a), dynamic rescheduling
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significantly reduces the occurrence of missed deadlines. In particular, their number is
decreased from 189 to 1 when the deadline is set 15 hours after the estimated completion
time, and from 273 to 55 when the deadline is set 2.5 hours after the estimated completion
time. With deadlines set at FRT + 15h, the average total lateness is also increased from
5h 33m to 6h 45m, meaning that more time is left between completion times and deadlines;
with deadlines at ERT + 2.5h a slight decrease can be observed, from 1h 44m to 1h 36h,
but the total lateness for successful jobs increases as more deadlines are fulfilled. In all
experiments, the average missed time is decreased substantially when dynamic reschedul-
ing is employed, going from 1h 53m to 3m with ERT + 15h, and from 1h 25m to 33m
with ERT + 2.5h. Finally, Figure 5.6 (b) shows a significant increase in the number of
INFORM messages as tighter deadlines are enforced.
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Figure 5.6: D - Benefits of rescheduling with deadline schedulers

5.4.5 E - Benefits of rescheduling with advance reservation

In advance reservation scheduling the system must ensure that allocated time slots are
enforced, and that jobs can start executing on time. However, when multiple reservations
are made, collisions may happen and some reservations might need to be delayed. Because
our protocol strives to provide a best effort meta-scheduling service, an important metric
to assess its benefits is the average delay time across all reservation slots. In contrast to
deadline scheduling, the execution of a job cannot be arbitrarily started, but has to wait
until the reservation start time; additionally, with task pools, each task has to wait until
all dependent tasks are ready. Fach one of the 1000 submitted jobs is composed of 1 to 4
dependent tasks; in each simulation run a total of 2495 tasks on average was scheduled on
the grid. Because each task is scheduled independently, dynamic rescheduling is performed
on a per-task basis rather than per-job.

As shown in Figure 5.7 (a) the average delay is significantly reduced when dynamic
rescheduling is employed, from 38m to 5m per job in single task reservations, and from 6h
45m to 2h 40m per task in task pool reservations. Moreover, concerning the scheduling of
task pools, a substantial decrease in the number of revoked jobs, that are reduced from 295
down to 20, can be observed. Concerning network overhead, Figure 5.7 (b) highlights the
significant increase in the bandwidth consumed by INFORM messages, which bespeaks
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Figure 5.7: E - Benefits of rescheduling with advance reservation

for a more unstable behavior of the protocol in the considered conditions.

5.4.6 F - Sensitivity

Results of the sensitivity analysis will lead to a better understanding of the meta-scheduling
protocol and lay more solid foundations for further research.

F1 - Sensitivity to ERT precision An important assumption of the protocol is the
availability of an accurate job running time estimation. Because of estimation errors, the

actual running time might be higher or lower than the ERT. The results shown in Figure

5.8 (a) provide an insight on the performance of the dynamic rescheduling mechanism
implemented by ARZA. The balanced nature of the introduced error accounts for the
homogeneity of the average completion time across all experiments. The stability of the
protocol is confirmed by the overall traffic generated during the experiments (Figure 5.8

(b)), which remains stable and consistent across all simulations.
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F2 - Sensitivity to jobs candidate for rescheduling The behavior of the dynamic
rescheduling phase is determined by the number of jobs that could potentially be reas-
signed. In this regard, we are interested in evaluating the impact of different rescheduling
strategies with two relevant scheduling policies, namely batch and advance reservation
scheduling. More precisely, we consider the influence of a different number of jobs candi-
date for rescheduling on the average job completion time and on the number of delays, for
batch and advance reservation schedulers respectively.

The results depicted in Figure 5.9 show no noteworthy variation in the total comple-
tion time when batch schedulers are concerned, and negligible differences with single task
advance reservation scheduling. On the contrary, with task pool reservations rescheduling
of 1 and 4 tasks achieves a lower average job start delay than the default policy of 2 tasks.
In this context, rescheduling 1 task seems to provide the best performance, although the
number of revoked jobs is slightly increased.
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Figure 5.9: F2 - Sensitivity to jobs candidate for rescheduling

Concerning the network overhead, the bandwidth consumption to be accounted to
INFORM messages significantly increases as more jobs are considered for the rescheduling
phase. From this point of view, selection of 1 candidate emerges as the best option in all
scheduling policies.
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F3 - Sensitivity to job submission node In all previous scenarios jobs are submitted
to a random node in the grid, thus favoring an even distribution of the requests across
all available resources. In order to assess the influence of this choice on the performance
of the meta-scheduling protocol, experiments where all 1000 jobs are submitted to only
one single broker were conducted. Concerning the average total completion time, Figure
5.10 (a), highlights no significant difference between the two submission strategies when
rescheduling is enabled, and only a small increase is noticeable when no rescheduling is
allowed. On the contrary, an analysis of the traffic, illustrated in Figure 5.10 (b), shows
equivalent results.
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Figure 5.10: F3 - Sensitivity to job submission node

F4 - Sensitivity to job profiles distribution The last set of experiments focuses
on the distribution of job profiles. Instead of generating job requests according to the
simulated distribution of resources, experiments with uniformly distributed requests have
been performed. The results concerning the average total completion time are illustrated
in Figure 5.11. It is evident that a uniform distribution worsens the performance of the
meta-scheduling process, and almost denies all benefits of the dynamic rescheduling phase.
This degradation of the performance can be attributed to the large number of jobs that
require very rare resources: in this case, the queues on nodes sharing such resources quickly
becomes overloaded, leading to substantial increase in waiting times.

5.5 Accuracy of the results

Results detailed in this chapter represent an average over 5 simulation runs for each sce-
nario. Time for completion graphs are computed on an average on 1000 jobs in each run.
The obtained performance data has proven to be very stable, with minimal variations
across all runs and scenarios. Concerning the average total time for completing a job, the
relative standard deviation is 2.6%; conversely, for the average waiting time it is 5.98%,
and for the average execution time 1.48%. Pertaining to deadline scheduling, the most
relevant relative variations of missed deadlines were found in scenario D with dynamic
rescheduling enabled, with a deviation of 97% on an average of 1 job with ERT + 15h,
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Figure 5.11: F4 - Sensitivity to job profiles distribution

and of 43% on an average of 55 jobs with ERT + 2.5h; without dynamic rescheduling the
obtained variations were in the range of 13.10%, on an average of 189 jobs with ERT +
15h, and 5.8% on an average of 273 jobs with ERT + 2.5h.

5.6 Summary

In this chapter, we focused on the problem of efficiently allocate tasks across geographi-
cally distributed resources. We presented a fully distributed grid meta-scheduling protocol
named ARZA that aims at improving the efficiency of heterogeneous grids, as well as ad-
dressing the related scalability and adaptability concerns. From this point of view, our
work reflects the vision of next-generation grids that strive to evolve into reliable, flexi-
ble, autonomic, and self-manageable systems that require minimal user intervention and
reduced deployment costs.

The proposed meta-scheduling protocol, named ARZA, is based on simple messages
exchanged between grid nodes over a peer-to-peer overlay, and does not depend on the
actual implemented local scheduling policies. This enables better integration with existing
grid middlewares and facilitates its adoption. The central point of our work is the support
for dynamic rescheduling of jobs, which enables optimal job reallocation under dynamic
conditions, for example by making use of newly available resources and by taking into
account changes in resource utilization.

Throughout extensive experimental evaluation, we validated the behavior of the proto-
col and assessed significant results concerning the effectiveness of our approach. In partic-
ular, we achieved shorter average execution times with batch schedulers, a reduced number
of missed deadlines, and decreased delays in advance reservation scheduling. The proto-
col also demonstrated its ability to enhance load-balancing amongst the nodes. Finally a
traffic analysis pinpointed an acceptable bandwidth consumption when compared to the
acquired benefits, thus suggesting the viability of our approach in real-world deployments.
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SMARTGRID is a novel grid middleware that aims at supporting grid applications run-
ning over a set of non-dedicated resources. From this point of view, SMARTGRID follows
the idea of implementing a desktop grid that brings together the power of a large number
of personal systems voluntarily shared by their users to provide on-demand access to com-
puting resources. In contrast to traditional grid infrastructures, the SMARTGRID vision
is geared toward peer-to-peer interaction between systems, and promotes self-organization
and adaptiveness.

To abstract from the volatile and unreliable nature of the considered underlying re-
sources, a multi-layered architecture has been considered. More specifically two main con-
cerns have been identified, namely that of resource monitoring and of high-level task man-
agement. Accordingly the middleware is composed of two loosely coupled functional layers,
the Smart Signaling Layer (SSL) and the Smart Resource Management Layer (SRML),
which are connected by means of a Datawarehouse Interface (DWTI). This design promotes
a clear separation between low-level communication amongst peers and high-level task
allocation activities.

SMARTGRID also differs from common grid middleware platforms, such as GLOBUS
[117], in that it operates in a fully distributed and self-organized way, hence lowering
the need for supervised operation and reducing deployment effort. Moreover, for low-
level activities, such as resource discovery and communication, bio-inspired solutions are
employed in order to achieve the required characteristics of adaptiveness, robustness and
self-organization.

The work presented in this thesis mainly focuses on the SSL; in particular, the overlay
management algorithm and the resource discovery mechanisms are employed to provide
basic services to the grid and enable sharing of resources among nodes. In addition,
the meta-scheduling protocol concerns the SRML. In the following we thus group all the
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components presented in previous chapters and describe how they are integrated within the
SMARTGRID framework. In section 6.1 the details of the multi-layered architecture are
presented, while in section 6.2 the platform used for the SSL is introduced and a discussion
about its strengths is presented.

6.1 SMARTGRID

SMARTGRID is a distributed grid middleware that aims at providing stable, robust, and
efficient resource management over a heterogeneous and volatile pool of geographically
sparse resources. The architecture is composed of three layers (Figure 6.1): the Smart
Resource Management Layer (SRML), the Smart Signaling Layer (SSL), and a dataware-
house interface for loosely coupled interaction. The SRML is in charge of managing user
requests and job scheduling by exploiting information gathered from the SSL, which pro-
vides resource discovery and low-level communication between nodes.

In the considered scenario, each SMARTGRID node runs an instance of both the SRML
and the SSL. Concerning the software aspect, the SRML is implemented by MAGATE nodes
[149, 148|, whereas the SSL is based on SOLENOPSIS nodes [52]. The design of the node is
modular, to allow for easy replacement of single components and reuse of existing modules
for different purposes.
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Figure 6.1: SmartGRID node architecture

Smart Signaling Layer The Smart Signaling Layer (SSL) manages low-level communi-
cation between grid nodes as well as providing resource discovery. In this context, several
of the components presented in this thesis have been integrated in the SSL, as shown
in Figure 6.1. In particular to manage the overlay connecting SMARTGRID nodes, the
BLATANT algorithm is employed. To support this functionality from a practical point of
view, a custom runtime platform tailored for the deployment of bio-inspired ant algorithms
called SOLENOPSIS (presented in detail in the forthcoming section) has been developed.
Finally, to support efficient resource discovery the approach presented in Chapter 4 has
been employed.
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Smart Resource Management Layer The Smart Resource Management Layer (SRML)
is in charge of supervising the usage of resources and mediating interaction between the
user and the system by providing an interface for task submission and tracking. The SRML
exploits information from the SSL to efficiently schedule tasks either on local resources or
on remote nodes. Accordingly, the SRML interoperates with the existing scheduling in-
frastructure and obeys to local and remote resource usage policies. At the SRML level,
each node is managed by a software application called MAGATE [148]. As shown in Figure
6.1, the MAGATE itself is comprised of different components that enable interaction with
local resources, remote MAGATE, external services as well as users and applications. In
the following, a brief review of each component is provided.

— Kernel Component: represents the core of the MAGATE, and provides the logic
to analyze job descriptions, monitor system load, take scheduling decisions, and
coordinate the operation of the other components.

— Local Resource Management (LRM) Component: connects to low-level re-
source management systems and middlewares such as GLOBUS [117] or UNICORE
[21].

— External Component: offers a plug-in mechanism that enables the integration
of additional services, such as resource discovery or hardware monitoring. In the
context of SMARTGRID, the Datawarehouse is interfaced by means of an external
component.

— Interface Component: deals with job submissions from different sources, such as
grid users and applications.

— Community Component: manages connections between MAGATES, in order to
support external job scheduling requests and job transfer requests.

Datawarehouse The SSL and SRML communicate through a datawarehouse, which
provides both an asynchronous communication channel and a temporary storage. In the
context of the SMARTGRID middleware, the datawarehouse also helps maintaining clear
separation of concerns between the two functional layers.

Although the main contribution of this thesis fall within the Smart Signaling Layer,
research spans over all layers. In particular, the overlay management algorithm introduced
in Chapter 3 and the resource discovery protocol in Chapter 4 concern the SSL, while the
meta-scheduling framework presented in Chapter 5 concerns the SRML.

6.2 SOLENOPSIS

SoreNoPsts ! [52] is a framework for the deployment of fully distributed ant algorithms
composed of a programming language and an execution environment. The framework

!Solenopsis Invicta, also known as Red imported fire ant, is a particularly aggressive species of ant
originally from South America.
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was developed specifically for the SMARTGRID project, in order to fulfill the need for a
software platform to base the Smart Signaling Layer on.

6.2.1 Related Work

Several platforms exist aimed at supporting the development of ant algorithms; noteworthy
examples are the SWARM SIMULATION SYSTEM [209], MASS [146] and ANTHILL [27]. In
this section we briefly review these systems and highlight their characteristics:

Swarm Simulation System The SWARM SIMULATION SYSTEM [209] allows to model
multi-agent discrete simulations at different levels. The framework is object-oriented, with
agents being mapped as objects. Agents can interact with each other, and the whole
simulation can be synchronized. The platform itself offers different tools for algorithm
profiling and data analysis. Unfortunately, the platform is limited to simulations and does
not provide any support for fully distributed agent deployment.

Multi-agent System Simulation Framework The MULTI-AGENT SYSTEM SIMULA-
TION FRAMEWORK (MASS) [146] allows accurate and controllable simulations of systems
composed of collaborative agents. Agents can sense the simulated environment and per-
form a mixture of real and simulated activities. The platform supports both discrete time
and event-based simulations, but is not targeted to fully distributed deployments.

Anthill ANTHILL [27] is a JAVA framework that supports P2P application development.
It provides runtime and simulation environments and it has been successfully used to
implement the MESSOR [210] load-balancing algorithm. The runtime environment is a
middleware built on JXTA [131] and allows for real-world deployment of applications. A
simulation environment is also supported and enables local testing and evaluation of ant
algorithms. Unfortunately the development of ANTHILL was stopped in year 2002.

Because both SWARM and MASS focus on the development and evaluation of multi-agent
coordination in distributed systems with total accuracy, by means of a simulation environ-
ment, their architecture is not well suited for real-world distributed dynamic environments.
In contrast, ANTHILL is not only aimed at supporting the design and analysis of P2P sys-
tems, but at the implementation of such systems in real network environments as well. To
such an extent the ANTHILL framework is the one mostly similar to SOLENOPSIS, although
it does not support transparent and strong migration of agents.

6.2.2 Solenopsis Framework Overview

SOLENOPSIS is comprised of several components that support both fully distributed exe-
cution (deployment mode), with an instance of the platform running on each of the par-
ticipating hosts, as well as local execution (or simulation) of several nodes (simulation
mode). Tt is noteworthy to mention that for the development of ant algorithms, there is no
distinction between these two scenarios: implemented algorithms can be executed either
in simulation or deployment mode, without modification; moreover, simulated nodes can



6.2. SOLENOPSIS 133

be seamlessly combined with deployed ones in a fully distributed environment to enable
complex evaluation scenarios.

Deployment mode Figure 6.2 depicts the architecture of a node in a fully distributed
setup. On start-up, a configuration script is processed by the platform daemon. The
script contains the list of operations required to set up the node and initialize the required
plug-ins, and is executed in the platform’s shell. As a result of this phase a node daemon
is instantiated, along with all the plug-ins needed for implementing the extended function-
alities of the node (for example, the BLATANT algorithm) as well as for exposing access
to external resources (such as the Datawarehouse). To enable communication between
nodes, the platform daemon provides a mail server (that implements a custom proto-
col based on TCP/IP communication): the server allocates a uniquely identified mailbox
to the node daemon which is used to send and receive ants from, respectively to, other
SOLENOPSIS nodes. Actual data transfer is managed by the mail service. Incoming ants
and locally started ants are compiled and then executed in sandboxed virtual machines,
the execution of which is managed by a preemptive scheduler. The scheduler enables
concurrent execution of many virtual machines without creating an excessive number of
threads. When an ant requests to migrate to another node, the built-in migration service
serializes the ant’s state and transfers it to the target node, where execution is resumed.

SOLENOPSIS NODE, \

PLUG-IN SERVICES BUILT-IN SERVICES ~ ANT EXECUTION
T 1T 1

1
‘ DWI ACCESS ‘ MIGRATION .
cooe| | oo Node
‘ BLATANT-S ‘ API FUNCTIONS a | v | Daemon
‘ ‘ MAIL SERVICE Preemptive Scheduler
Configuration Control H Compiler H Mail Server ’ Shell Platform

\ Script Daemon/

Figure 6.2: Solenopsis deployment mode with node detail

Simulation mode In simulation mode (Figure 6.3) each platform daemon manages mul-
tiple node daemons. In contrast to deployment mode, plug-in services can be shared be-
tween node daemons to reduce memory footprint. Moreover, simulation specific plug-ins
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to provide useful global statistics, such as network measurements, can be enabled.
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Figure 6.3: Solenopsis simulation mode
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6.2.3 Ant programming language

Ants are developed in a Lisp-like language called DLisp which is compiled to a byte-code
representation and executed by a stack-based virtual machine on the node. The algorithm
describing the behavior of the ant as well as its runtime state are encapsulated in the ant
itself. It is thus possible to create and execute different ant species in a distributed system
without replacing components or functionality on each node. Moreover, as the evaluation
and the deployment environment are the same, there is no need to re-implement algorithms
for large-scale deployment. As the ant behavior is executed inside a virtual machine, ant
code is sandboxed and only services made available by the node can be accessed.

The programming language supports different basic data types such as numbers (inte-
gers and floating point), strings, lists, dictionaries, simple closures (lambda), and nil (the
only type whose semantic value is the boolean False); functions to manipulate these types
are available as built-in. Moreover, macros can be developed to extend the language with
custom constructs.

6.2.4 Support for transparent strong migration

One of the strengths of SOLENOPSIS is the possibility to transparently migrate ant-agents
across nodes, as part of their execution. This feature is particularly important for bio-
inspired ant-algorithms, because mobility is an inherent capability of each agent. The
details of transparent strong migration are shown in the example illustrated in Figure 6.4.
Several steps are involved in the migration process:

1. the ant executing on a node calls the migrate function to migrate to another node;
2. the call is managed by the migration service running on the node;

3. a snapshot of the actual running state of the ant is requested from the control com-
ponent of the node; the state includes the current program counter as well as the full
execution stack;

4. the ant state is passed to the mail service to be sent to the target node;

5. the mail service serializes the received data, and forwards it to the local mail server;
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6. the serialized ant state is transmitted to the receiving node’s mail server;

7. the control component of the target node is instructed to create a new virtual machine
instance, and restore the execution state;

8. the virtual machine is created, and scheduled for execution;

9. execution of the ant code restarts, and the instruction following the call to migrate
is processed (the migrate function returns false if the migration does not succeed).
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(var myvar -1)

(if (migrate "bebop://216.34.181.45:1337/somenode")(:)
(set! myvar 1)

else
(set! myvar 0))

Figure 6.4: Strong transparent migration example

6.2.5 Extensibility

To integrate SOLENOPSIS within the SMARTGRID middleware a modular design approach
was employed. Additional services, written in JAVA, can be used to extend the function-
ality of node services and enable access to external components and resources from the
ant code. In the context of SMARTGRID, the modules that are implemented as exten-
sions to SOLENOPSIS include the BLATANT algorithm, the resource discovery service, and
access to the Datawarehouse to enable communication with the SRML. It is noteworthy
to mention that the generic and modular design of SOLENOPSIS enabled the integration
of its core components (namely, the compiler, virtual machine, and basic services) into
another project, called FLEXIBLERULES [121], aimed at supporting the development of
digital board games.

6.3 Summary

In this chapter we presented the SMARTGRID, a novel grid middleware that aims at
bridging the gap between applications and heterogeneous and volatile resources, by pro-
moting a fully distributed design and self-organized operation. SMARTGRID integrates
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the concepts and the solutions proposed in this thesis, namely the BLATANT overlay man-
agement algorithm, detailed in Chapter 3, the proactive caching mechanism to improve
resource discovery discussed in Chapter 4, and the ARiA protocol for fully distributed
meta-scheduling, presented in Chapter 5. The framework is based on a multi-level design
composed of two layers: the Smart Signaling Layer (SSL) and the Smart Resource Manage-
ment Layer (SRML). The first is in charge of managing low-level aspects of the middleware,
such as communication between grid nodes and resource discovery, whereas the latter deals
with high-level concerns such as job scheduling and resource management. The SSL is im-
plemented by a runtime platform called SOLENOPSIS that supports the development and
deployment of ant-based distributed algorithms, whereas the SRML is composed of MA-
GATE components that provide an interface to grid applications, schedulers, and existing
grid middlewares.
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Self-organization and adaptiveness are commonly viewed as important aspects to sup-
port reliable, efficient, and scalable distributed solutions. In this respect, the development
of novel self-organized and adaptive solutions for distributed systems was the impulse that
motivated the research carried out in this thesis. To this extent several essential aspects
of autonomic management and exploitation of distributed systems have been studied, in
particular the construction of an optimized peer-to-peer overlay with bounded diameter
and girth, the implementation of a resource discovery mechanism based on local shortcut
caches to increase the efficiency of flooding based protocols, and the definition of a fully
distributed meta-scheduling protocol that improves task allocation across large pools of
resources. Each of these aspects has been thoroughly researched, and a comprehensive
literature review of existing solutions has not only motivated but also driven our research
and developments. Moreover, a clear separation of concerns enables the incorporation of
the solutions implemented in this thesis into a variety of situations where fully distributed
and autonomic operation is required, although the target of the evaluation has been the
grid scenario defined by the SmartGRID project.

The solutions that have been proposed fit extremely well into the emerging self-organi-
zation realm. In this chapter we summarize the main contributions for each of the topics
considered in this thesis, and highlight their distinctive characteristics as well as future
research directions.

7.1 Overlay management

The proposed overlay management algorithm, called BLATANT, answers the problem of
maintaining an optimized overlay that enables communication between peers with a re-
duced number of retransmissions. By means of bio-inspired, fully distributed techniques
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the overlay is managed in a self-organized and adaptive way, and is scalable as well as
robust to both node and communication failures. The behavior of BLATANT has been
empirically studied under different network conditions, and results of simulations have
shown to be promising in respect to the possibility of employing bio-inspired optimiza-
tion in communication networks. More specifically, the two proposed implementations
of the algorithm, namely BLATANT-R and BLATANT-S, enable effective management of
peer-to-peer overlays and provide satisfactory performance under churn and in the event
of unexpected communication failures. The produced overhead on network resources as
well as the the scalability of the system have been deemed reasonable in respect to other
existing solutions (such as GNUTELLA or NEWSCAST). Hence, in response to the research
problem set in Chapter 1, “Can we exploit self-organization and bio-inspired solutions to
provide an optimized peer-to-peer communication and service provisioning framework?”, we
can assert that our contribution provides a sufficient and affirmative answer.

7.1.1 Future research directions

Although the considered evaluation scenarios have proven the viability of BLATANT, more
extensive experimentation is undoubtedly required to understand the implications of dif-
ferent network conditions on the robustness and reliability of the algorithm. Moreover,
full scale tests in a real network would help determine the limits of our approach, better
comprehend the influence of the considered parameters, and drive further improvements
on the underlying logic. In this sense, an interesting research direction will consider the op-
timization of the overlay according to the underlying network topology, in order to reduce
transmission delays and low-level traffic.

The collaborative process of detecting long paths and small cycles carried out by nodes
could be improved by letting nodes exchange more information. In particular, if a node
detects a cycle for which it is not responsible (hence it cannot break), a notification to
the master of that cycle could be sent. Conversely, neighbor nodes could be queried in
order to determine distances on the graph with more precision. Moreover, to detect some
partitioning situations, nodes could analyze the information brought by Discovery Ants and
measure its entropy. In a similar way, the optimization process could be made adaptive in
respect to the perceived dynamicity of the network.

Security should also be studied in a more comprehensive manner; in particular an
analysis of the robustness of the system in presence of misbehaving peers, and against
targeted attacks has been neglected in this thesis, as its scope and time plan did not allow
us to delve into this field. Future work should definitely consider such concerns in order
to produce a solid distributed platform.

Furthermore a detailed comparison with other existing approaches (besides the ones
considered in this thesis) would help us understand the benefits and weaknesses of our
approach. In this regard, the lack of a common evaluation platform where different peer-
to-peer algorithms could be evaluated under the same premises is considered as the most
important issue that would need to be solved in the future.
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7.2 Resource discovery

The second question set in Chapter 1 concerns the problem of locating information in
a distributed system, and asks “Can we improve existing resource discovery mechanism
using fully distributed bio-inspired solutions?”. The approach that we proposed in this
thesis implements a local routing cache on each node that stores references to other nodes
in the overlay that share similar resources. In order to reduce the overhead derived from
updates to the cache, which are achieved by means of proactive queries broadcasted on the
network, an epidemic algorithm was employed to merge the contents of local caches between
nodes. In this regard, a bio-inspired solution like epidemic cache merges enabled us to
manage local caches with minimal network overhead, without sacrificing the quality of the
contained information. By means of extensive experimentation in different scenarios, the
benefits of such semantic-aware techniques were evident, even when combined with another
mechanism aimed at improving flooding-based resource discovery, namely replication. As
determined by evaluation on different types of overlay, the improvements brought by the
proposed approach are independent from the peer-to-peer topology, hence our solution can
be implemented in a variety of scenarios.

7.2.1 Future research directions

It would be of merit to compare our solution with other flooding improvement techniques,
and on different peer-to-peer overlays (either unstructured or structured). Different for-
warding techniques should also be considered: in this context we find non-forwarding
approaches presented in [303, 188] interesting. In the same sense, the forwarding strategy
employed in the cache could be improved, for example by favoring routing towards nodes
with higher similarity: this solution would nonetheless require similarity values to be stored
in the cache itself.

Several improvements of the proactive caching scheme are possible. In particular, refine-
ments to the similarity function could be introduced to support more complex semantics,
although the one used in our evaluation to determine matching resources is appropriate
for grid scenarios. Another aspect worth considering in future research works concerns the
outcome of the merging process: whereas the implemented solution filters the entries to
retain after a merge by selecting the most recent ones based on their age information, more
useful information could be retained by employing information about the similarity.

7.3 Meta-scheduling

Efficient task-allocation concerns the last question that we asked in Chapter 1, and to
answer it a fully-distributed meta-scheduling mechanism called ARZA was presented in
Chapter 5. Our solution implements a lightweight protocol that enables decentralized
coordination of local schedulers, without requiring each node to disclose the details of
its own scheduling policy, which ensures flexibility and scalability. Empirical evaluation
validated the benefits of the protocol in different conditions in terms of decreased total job
execution time and improved load-balancing.
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7.3.1 Future research directions

The encouraging results obtained by our evaluation provide a solid base for future devel-
opments, which should primarily focus on some issues that were consciously set aside in
this thesis. In this regard, interesting future research directions include evaluation with
grid schedulers in a real grid deployment. In this thesis we modeled several simple policies
for batch and deadline scheduling, nevertheless real schedulers deal with more unexpected
situations, that include job revocation, requirement changes, queue holding, and hardware
or software failures. Also, the scope and time plan of this thesis did not allow us to dig
into the problem of parallel job scheduling on the same node, having chosen to employ a
simpler model where only one job at a time executes on a node. Therefore, a wider range
of scheduling and execution policies could be introduced.

The logic to determine the nodes best suited to schedule tasks on could be changed to
include information other than the expected cost. More specifically, as proposed in [148],
node trust and reputation could be taken into account.

As for overlay management, reliability and security within the proposed scheduling
framework should be studied in a more comprehensive manner. Concerning the first is-
sue, our evaluation assumed that no failure could terminate job execution; in this sense,
mechanisms to enable job recovery and resubmission in the event of a failure should be
implemented in the future. Conversely, regarding security in our evaluation job allocation
was performed under the premise that trust relationships exist between each participating
nodes, although this cannot be assumed in a real distributed scenario.

7.4 SMARTGRID

We presented the SMARTGRID middleware architecture, that aims at providing a fully-
distributed solution to operate a grid environment. SMARTGRID builds on two functional
layers, and the work presented in this thesis covers the signaling layer, which is responsible
for communication between nodes and monitoring of the network. In this context, we
proposed a software framework called SOLENOPSIS, which enables the development and
execution of ant-based distributed algorithms, and helps bringing together all the afore-
mentioned functional components (overlay management, resource discovery, scheduling)
into the SMARTGRID architecture. By means of a simple, modular design, our solution
is also flexible and easily extensible, and could be implemented in other scenarios. The
promoted programming language enables fast prototyping of ant mobile agents, and is sup-
ported by a runtime environment that supports transparent strong migration across the
overlay. This feature simplifies the development of mobile code, by removing the hassle of
requiring explicit execution state serialization and de-serialization.

7.4.1 Future research directions

In the context of the SMARTGRID project, future work will focus on evaluating all as-
pects of the middleware, in particular job submission and execution, in a full-scale grid
environment. Furthermore, further development of SOLENOPSIS should improve support
for controlled simulation conditions, for example by considering network latency, as well



7.5. Epilogue 141

as by implementing additional measurement and statistical utilities.

7.5 [Epilogue

Self-organization can bring a decisive improvement in the performance, reliability, and ro-
bustness of distributed systems. In this context, bio-inspired unsupervised solutions can
be used to achieve self-organization and optimal operation of networked systems. The
proposed framework of algorithms shows that it is possible to exploit self-organized behav-
iors to support or improve different areas of distributed computing, namely peer-to-peer
overlay management, resource discovery, and task allocation. The central part of our work,
which consists of the BLATANT algorithm, achieves fully distributed management and op-
timization of a peer-to-peer overlay by means of a process that uses bio-inspired techniques.
Beside that, epidemic algorithms have proven to be a simple yet efficient solution to share
information between nodes, and improve search in unstructured overlays. Finally, self-
organization can also be used to achieve optimal fully-distributed task allocation in grids,
thus support benefits in terms of performance, scalability and robustness. Undoubtedly
we do not claim that bio-inspired solutions address to a full extend the problems of self-
organization and self-management of distributed systems. Nonetheless in the considered
scenarios they have proved to be suitable approaches providing satisfactory performance.
This further strengthens our belief that self-organized and bio-inspired techniques are wor-
thy contenders in the field of distributed systems design.
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Appendix A. Detailed Results for Chapter 3
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