This article has been accepted for inclusion in the International Journal of Gaming and Computer-Mediated Simulations, 2(2), 18-35, April-June 2010.
Content is final as presented, with the exception of layout and pagination.

Decoupling Aspects in Board Games Modeling

Fulvio Frapolli, Amos Brocco , Apostolos Malatras and Béat Hirsbrunner
Department of Informatics, University of Fribourg, Switzerland

Existing research on computer enhanced board games is mainly focused on user interaction is-
sues and look-and-feel, but overlooks the flexibility of traditional board games when it comes
to game rule handling. In this respect, we argue that successful game designs need to exploit the
advantages of the digital world as well as retaining such flexibility. To achieve this goal, both
the rules of the game and the graphical representation should be simple to define at the design
stage, and easy to change before or even during a game session. For that reason we propose a
framework allowing the implementation of all aspects of a board game in a fully flexible and
decoupled way. In this paper, we describe the FLEXIBLERULES approach, which combines both a
model driven and an aspect oriented design of computer enhanced board games. The benefits
of this approach are discussed and illustrated in the case of three different board games.

Introduction

Recent research in the domain of multi-user interaction,
such as multi-touch interactive tables (Loenen et al., 2007,
Mazalek, Reynolds, & Davenport, 2007), opened a broad
range of new possibilities redefining the concept of human-
computer interaction. Noteworthy applications of these de-
vices are computer enhanced games, which take advantage of
both the physical and the digital worlds in order to improve
the user experience. Our research is focused on computer en-
hanced board games, aiming at improving user experience by
mixing the full flexibility of traditional board games played
around a table with computational functionalities from the
digital world.

Games benefit from the features offered by digital envi-
ronments, such as the high degree of dynamicity that can be
introduced by means of advanced visual and audio effects.
These further promote improvements in the immersive ex-
perience (Amory & Adams, 1999), and the interactivity of
the game-play (Malone, 1981). It is evident that a significant
amount of benefit can be gained by transferring the concepts
and the games themselves from the physical to the digital
world. Advanced visualization capabilities spur the develop-
ment of innovative and sophisticated representations of game
graphics and computer support can also help ease complex
game tasks or situations, for instance by calculating intricate
winning conditions, or by performing mundane tasks such
as card shuffling or point distribution. However, the rules
that guide the game-play are typically handled by the game
software and are tightly intertwined with it, with their imple-
mentation hidden and inaccessible during game-play.

While the porting of physical board games to their
computer-enhanced counterparts has been to a large extent
successful, there exist certain aspects of traditional game-
play that are not inherently supported to date. These deficits
diminish the merits of computer-enhanced board games and
lead to players registering a smaller degree of game satis-
faction. As pointed out in (DeKoven, 1978; Salen & Zim-
merman, 2003), the ability modify the rules should not be

considered just as an additional feature of the game, but as a
central aspect of it that should not be neglected. It empowers
the players by giving them overall control of the game and
its features, while at the same time enabling them to mod-
ify the level of difficulty of the game or even its winning
conditions. One additional advantage of being able to dy-
namically update the game rules and logic is the ability to
extend the game-play and incorporate or update specific op-
tions and parameters that are usually hardcoded in the game
software. Unfortunately, traditional approaches to game soft-
ware development fail to support this vision, and represent a
high barrier for both casual and experienced players without
any programming skills, wanting to modify some rule of the
game. Furthermore, depending on how the game is imple-
mented, it could be difficult even for a programmer to add
a certain rule without having to modify large portions of the
code. In contrast, physical games allow the redefinition of
rules by means of social agreement between players at any
time during game-play.

In this paper we propose an extensible and efficient frame-
work called FLExiBLERULES that aims at taking advantage of
both approaches (i.e. physical and digital), by allowing the
implementation of board games in a fully flexible and de-
coupled way. The FLExBLERULES framework is comprised of
both a conceptual model to design board games and also a
set of tools, including a domain-specific language and a ded-
icated compiler, to realize the aforementioned design. The
different aspects of the game, such as the logical behavior of
the different game objects, their representation, and the out-
come of each action are modeled separately and can be freely
modified during game-play. The main goal is to promote
modularity and clarity: the user should be able to quickly
identify what is to be modified and where in order to change
something in the game. Another requirement that was taken
into consideration was simplicity of use, as it is not to be ex-
pected that all users will be skilled developers. To this end,
the FLExiBLERULEs framework employs a user-friendly, Lisp-
inspired language to implement its functionality. Another
important aspect is providing the user with full control of

This article has been accepted for inclusion in the International Journal of Gaming and Computer-Mediated Simulations, 2(2), 18-35, April-June 2010.
Content is final as presented, with the exception of layout and pagination.

2 FULVIO FRAPOLLI, AMOS BROCCO , APOSTOLOS MALATRAS AND BEAT HIRSBRUNNER

the degree of automation: game rules can either be enforced
by the system, or left to a human referee. Additionally, the
framework aims at providing game designers with tools sup-
porting the modeling of a game and allowing the creation of
prototypes that can be tested and fine tuned.

The rest of this paper is organized as follows. The next
section discusses and reviews related work in the field of as-
pect oriented development and games. We then present the
conceptual model that lies behind the FLEXIBLERULES frame-
work, followed by a detailed description of the basics of
the game definition language. The development environ-
ment that enables the implementation of actual board games
based on the aforementioned model and language is sub-
sequently described. In the section concerning the FLEXI-
BLERULES examples, we review the implementation of three
different games, illustrating their differences in the light of
the FLExiBLERULES framework. Finally, we provide some con-
clusions on the presented work and insights on future work,
having first discussed relevant implications in research, de-
velopment and practice.

Related Work

The motivation behind this research work has been to fully
support the conveying of physical board games into the dig-
ital environment. The main deficit of existing digital board
games is that they take into account the graphical represen-
tation of the game and its rules of play, but neglect the social
interactions that occur during traditional sessions of game-
play. One aspect of this is the freedom of letting players de-
fine house rules to make the game more enjoyable and suited
to their standards. It has been well-established (DeKoven,
1978; Salen & Zimmerman, 2003) that this ability constitutes
a focal point of any successful game design. In order for the
game to have any degree of flexibility, interactivity and be
enjoyable to play, the support for house rules (Mandryk &
Maranan, 2002) is a necessity, since amongst other things, it
promotes a much desired level of human-to-human interac-
tion. In this respect, we present a holistic framework, called
FLEx1BLERULES, to address the aforementioned issues at the
game modeling level.

The need to establish standard models for the design and
subsequent analysis of games is evident, as it allows for a
common understanding and a shared vision among develop-
ers and also users (Bjork & Holopainen, 2004). Modeling
a board game requires a deep understanding of all the ob-
jects involved, their behaviors and interactions, as well as the
laws that govern the game world (i.e. rules that define al-
lowed actions during game-play) and the winning conditions
(Sanchez-Crespo, 2003). A first effort to simplify the mod-
eling of a problem can be achieved through object orienta-
tion, and the definition of objects roles (Steimann, 2000). By
recognizing the different entities composing the game, along
with their relationships and roles, it is possible to create a
model in a more natural way. Additionally, by separating
different functional concerns encompassing single entities, as
done with Aspect Oriented Programming (AOP) (Kiczales et
al., 1997), the logic behind each object can be further sim-

plified. Whereas (Steimann, 2005) considers aspects only as
concerns of programming, there are many examples present-
ing them as core functional parts of a system (Rashid & Mor-
eira, 2006), and as useful abstraction mechanisms which help
express computer programs in a more natural way (Lopes,
Dourish, Lorenz, & Lieberherr, 2003). In the same spirit,
we want to promote aspects as a central functional part of
modeling, and argue that an advanced separation of concerns
will not only ease the modeling and implementation phases
(Miller, 2001), but also effectively help end-users better un-
derstand the logic of the game.

A first step in this direction was taken by (Reese, Du-
vigneau, Kohler, Moldt, & Rolke, 2003), who divided the
logic behind the game in terms of states, behaviors and rules.
Different aspects of the game Settlers Of Catan™ are dis-
tributed between two types of agents: administrative agents
and players. Administrative agents are in charge of control-
ling the game board state, monitoring the enforcement of the
game rules, and the resources owned by player agents, while
player agents represent both the computer controlled player
and the human counterpart. (Jarvinen, 2003) proposes an
approach for describing game rules as different aspects. The
authors point out that game rules can be divided into five
types: rules governing the game components and their func-
tion, rules governing relations between elements, rules that
define game environments (i.e. the physical boundaries of
components), rules that define the theme and rules for the
user interactions.

Building on the aforementioned concepts and ideas we
plan to extend current approaches and distribute all of the
game logic within the game entities, as well as dividing it
into different aspects; by clearly separating concerns of the
game, we aim at simplifying the logic, and easing its com-
prehension by users, while catering for the full support of
flexibility that traditional board games exhibit.

FLexiBLERULES Model

FLexBLERULES is a framework for modeling and imple-
menting board games around their atomic elements, the game
entities, aiming at a simplified functional description of the
game logic and its graphical representation. This section
details all the elements that conceptually define the game
model, both from a structural and a functional point of view.
The game definition language presented in the following sec-
tion comprises the infrastructure for developers to implement
their games based on the proposed conceptual model.

We recognize two levels of abstraction as far as game
modeling is concerned, namely logic and representation,
which provide us with an initial separation of concerns.
These concerns are modeled separately as logical and repre-
sentation layers, dealing with a low-level description of game
dynamics, and the high-level interface with the real-world
(typically a graphical or tangible representation) respectively.
Thus, the game model can be viewed as the composition of
these two layers.

This article has been accepted for inclusion in the International Journal of Gaming and Computer-Mediated Simulations, 2(2), 18-35, April-June 2010.
Content is final as presented, with the exception of layout and pagination.

DECOUPLING ASPECTS IN BOARD GAMES MODELING 3

Logic Layer

The Logic Layer is comprised of entities, which are the
building blocks that define the functional core of a game.
We distinguish between two types of logic entities: active
(such as human or computer players) and reactive (such as
the pawn or the board). Reactive entities behave in response
to events originating from active ones. Because the FLExI-
BLERULES framework is not concerned with modeling real or
artificial intelligence players, the proposed model only fo-
cuses on reactive entities, and for the rest of this paper we
will use the term entity as referring only to reactive ones.
Extending the proposed model to encompass active entities
will be considered in our future research. An overview of the
elements of the FLExiBLERULEsS model concerning the logic
layer and the interactions between these elements is shown
in Figure 1.

Message
Label = X

Entity

State 1]State 2]~ [~ State n)

O Label A—>[Behavior |—>| Side-effects I
IO Label X—>{Laws || Behavior || Side-effects |
\
O Label H—>| Laws |—>[Béﬁzulor I

Message

O Label K—>| Laws |—>[Behavior |—>| S\de—eﬁectsl

O Label J—>{ _ Behavior |

Figure 1. Overview of the FLEXIBLERULES model

An entity is characterized by a functional behavior and a
set of private properties, which can be accessed and modified
only by the entity itself. Coordination and communication
between entities is performed through the use of messages.
Messages are information containers that are exchanged be-
tween entities during execution. Each message is identified
by a label, which is used to dispatch it. All game actions are
triggered by information exchanged between entities through
message passing. Upon reception of a message, an entity
triggers a certain internal reaction, its behavior, according
not only to the received information, but also to its current
internal state. The latter is stored as a specific state property
in each entity. This allows the implementation of separate
behaviors for the same message type for different states. The
execution mechanism is thus similar to a finite automaton,
such that actions executed by an entity are univocally defined
by the input triple entity, state, message label.

Semantic Aspects. The behavior of an entity describes
how it should act in a certain situation, without being con-
cerned with game rules that might disallow that particular
behavior or make it produce some secondary outcome. These
additional aspects of the game, referred to respectively as
laws and side-effects, are modeled separately as around and
after returning advices.

Laws The join point (a join point is the aspect-oriented
programming term for an interaction point with the rest of the
system (Elrad, Filman, & Bader, 2001)) for laws is before the
execution of a particular behavior: according to the current
state of the entity, and the values in the incoming message,
preconditions for the execution of the behavior are checked.
If pre-conditions are not met, a law advice can prevent the
execution of the behavior. Laws also typically prevent the
game from reaching an invalid situation, and can perform a
rollback to restore the last valid situation (for example, the
status just before an invalid player move). In order to ana-
lyze the actual global situation, laws can access all properties
defined by all the entities of the game.

Side-Effects The join point for side-effects is after the
execution of a behavior. Side-effects define secondary out-
comes of a behavior (for example, assigning points to the
players after the successful completion of a complete round
in a turn-based board game). Within a side-effect, it is pos-
sible to query attributes of each game entity, perform roll-
backs, and send messages to other entities (for example, to
inform them about the points earned by the player in the cur-
rent turn). Finally, side-effects can also be used to determine
whether winning conditions have been reached, thus ending
the game session.

Representation Layer

Having defined the logic layer and the semantic aspects of
the entities that comprise it, we present in this section the sec-
ond level of abstraction that we have previously introduced,
namely that of representation. Logic entities may have a dual
in the representation layer, commonly referred to as their rep-
resentation. Different forms of representation can exist, such
as graphical or tangible. On a computer interface, a repre-
sentation is typically composed of some graphical elements
that decorate the game world and provide a visual feedback
of the actual situation in the game. At any time during the
game-play, a representation should reflect the internal state
of its logical counterpart, by accessing its properties and ex-
ecuting any appropriate update procedures to mirror any po-
tential changes in the background logic. Moreover, repre-
sentations can also define representational properties, typi-
cally for storing graphical aspects such as their color, size
or their position on the screen. To retain consistency with
the proposed aspect-oriented approach throughout the FLEx-
BLERULES framework, updates to the representations are also
modeled as separate aspects in the form of before or after
advices.

Representation Updates Join points for representation
updates are placed before or after changes to internal prop-
erties of a logical entity. In this respect, the behavior of the
representation layer is to observe the logical layer and re-
spond to any modifications by appropriately reformatting the
graphical representation of the game. Update procedures can
access both the value before and after the property change,
therefore allowing the implementation of advanced graphical
transitions.

This article has been accepted for inclusion in the International Journal of Gaming and Computer-Mediated Simulations, 2(2), 18-35, April-June 2010.
Content is final as presented, with the exception of layout and pagination.

4 FULVIO FRAPOLLI, AMOS BROCCO , APOSTOLOS MALATRAS AND BEAT HIRSBRUNNER

User Interaction

A game is a system that often requires mixed user inter-
action. On one hand the user should be able to interact ex-
plicitly with the game by manipulating representations (In-
tentional User Interaction), e.g. to move pawns around a
checkerboard; on the other hand an entity may request user
intervention in order to perform a certain operation (Forced
User Interaction), e.g. information cards presented to the
users to notify them about game state. These two different
aspects of user interaction concern both the logical and the
representation layers: logic entities may trigger forced inter-
action, whereas representations may be the starting point for
intentional interaction.

Intentional User Interaction: the representation be-
comes an interface that allows the user to communicate with
game entities. During the game process, a representation can
send messages to its logical counterpart, and can also provide
a visual feedback by modifying its appearance.

Forced User Interaction: interactions with the user can
be necessary to determine the sequence of events to be ex-
ecuted in the game. Thus, the execution of a behavior may
temporarily stop to allow interaction with the user, and then
continue accordingly. Forced user interaction can be com-
pared to modal message dialogs shown by computer applica-
tions.

Game Definition Language

The core of the FLExiBLERULES framework is the domain-
specific programming language for representing and subse-
quently developing board games, based on the conceptual
model that we have presented. The language exposes all the
previously presented abstractions and allows the full imple-
mentation of different kinds of board games using the FLex1-
BLERULES development environment that will be presented in
the following section.

Language Basics

The language syntax is inspired by Lisp: expressions
are written using a prefix notation, and are enclosed within
parentheses. It is noteworthy to mention that we have also
implemented a compiler for the language we defined. The
need to introduce a novel language is spurred from the ob-
servation that current scripting languages have a general
scope, while we wished to express the semantics of the FLEx-
BLERULES model and hence defined this domain-specific lan-
guages specifically targeted at board games design.

The language uses dynamic typing, and recognizes six dif-
ferent data types: numbers (either integer or float values),
strings, lists, dictionaries (hashtables mapping string keys to
data values), messages and nil (equivalent to Boolean false).
Common operators to manipulate these data types are avail-
able. Local temporary variables, with scope limited to the
current behavior, can be defined using the var statement:

(var (identifier) (value))

Flow control can be managed both by using conditional state-
ments, as well as by means of loop statements:

(if (condition) {(body) else {body))

(switch (identifier)
(case (value) (body))

ié;lse (value) {body)))
(foreach (identifier) in (list) (body))
(while (condition) (body}))

The body element shown in the previous examples repre-
sents only a single statement. To define sequences of multi-
ple statements the following expression can be used:

(do (statement) ...{statement) end)

Entity Definition

Entities are composed of behaviors and properties. For
each possible state, we can define the behavior to be executed
upon receiving a message with the specified label as follows:

#state (name)
#onMessage (label)
(behavior)

#onMessage (label)
(behavior)

An entity can modify its state at any time by means of the
changeState function. Properties can be defined and initial-
ized from within a behavior using the following statement:

(new property (name) as {(value))

Values associated with properties can be retrieved using
the property function, and changed with the update prop-
erty function as follows:

(property (name))

(update property (name) to (value))

Notice that the property function does not return a refer-
ence to the property but just its value. To manipulate property
values it is thus often necessary to use a temporary variable
and update the property afterwards.

Messaging

Entities can communicate by exchanging messages,
which carry key-value pairs called attributes. Messages are
identified by a label, which is itself an attribute associated
with the key label. The primitive for sending messages along
with their attributes is the following:

This article has been accepted for inclusion in the International Journal of Gaming and Computer-Mediated Simulations, 2(2), 18-35, April-June 2010.
Content is final as presented, with the exception of layout and pagination.

DECOUPLING ASPECTS IN BOARD GAMES MODELING 5

(send new message (label) to (recipient) with
{attribute name) {value)

{attribute name) {value))

It is also possible to change some values of the received
message and then forward it:

(update message attribute (key) to (value))

(forward message to (recipient))

The sending or forwarding of messages is a blocking op-
eration, i.e. the current behavior is halted until the recipient
completes its execution. An entity waiting on a send or for-
ward operation can nonetheless accept and process incoming
messages.

Laws and Side Effects

Law and Side-Effect advices are defined using the same
syntax as behaviors, i.e. the aforementioned language state-
ments. To bind them with an entity, the following directives
are used:

#law on (label) to {(entity) in (state) is (law)
#isideeffect on (label) to {entity) in (state) is (se)

Assuming that laws and side-effects are stored in differ-
ent files, these directives bind the law specified in file law,
respectively the side-effect in file se, to entity entity. In par-
ticular, the law is applied upon receiving a message with la-
bel label in state state, whereas the side-effect executes after
the corresponding behavior. If multiple laws and side-effects
match a specified join-point, they are executed sequentially
following the order of the definitions. It is possible to refer to
generic pointcuts by replacing either label or state with the
wildcard character *. For example,

#law on * to (entity) in ’default” is (law)

inserts a law advice before every behavior in state default.
Laws and side-effects can also cancel a player’s move by
performing a rollback. In order to perform a rollback, an
entity must first create a checkpoint to save the actual status
of game:

(open checkpoint)

A rollback can then be invoked to restore the status up to
the last checkpoint:

(rollback (reason))

The reason argument allows to specify a text message to
be shown to the user explainaining the reason for the roll-
back.

Representations

Representations are the entities’ interface to the real
world. Since actual implementation just focuses on 2D rep-
resentations, we restrict the world to a 2-dimensional plane
displayed on a computer screen, but other kind of interfaces
could be easily implemented. Thus, the representation of an
entity consists of one or more graphical objects, each one
characterized by some physical attributes, such as size, po-
sition on the canvas, color, etc. According to the FLExI-
BLERULES model, a representation must reflect the status of
the corresponding logical entity at all times. Each represen-
tation therefore, as we have already described, defines update
procedures that are executed upon modification of any of the
observed properties of the underlying logical entity. Addi-
tionally, representations can also define private properties not
tied to their physical appearance, in order to keep persistent
information across updates.

A representation is modeled similarly to an entity;
nonetheless some important differences exist:

e representations can instantiate and manipulate graphi-
cal objects, whereas entities cannot;

e representations can only send messages to the underly-
ing entity (for user interaction purposes).

The latter difference results in a tight relationship between
the representation and the corresponding logical entity.

Graphical Objects. Representations can create simple
graphical objects on the representation canvas, which can be
identified by means of a unique name. These objects can only
be modified or destroyed by the representation. To create a
new graphical object, the new graphic function is used in the
following manner:

(new graphic (id))

(new graphic (id) with
(attribute name) {value)

(attribute name) (value))

Attributes of the graphical object can be specified at con-
struction time (using with {attributes)), as well as modified
at runtime as follows:

(update graphic (id) attribute {artribute) to (value))

Finally, it is possible to delete a graphical object using the
delete graphic function.

Representation Updates. One noteworthy element of the
language is the coupling of the representation layer to the
logical one. Representations can define observers on proper-
ties defined by their logical counterpart. Observers are trig-
gered when the corresponding property is updated, and can
be effectively set up by the representation as follows:

(observe (property) notify (label))

Before the observed property is updated to a new value,
the representation receives a notification message labeled /a-
bel along with the new value.

This article has been accepted for inclusion in the International Journal of Gaming and Computer-Mediated Simulations, 2(2), 18-35, April-June 2010.
Content is final as presented, with the exception of layout and pagination.

6 FULVIO FRAPOLLI, AMOS BROCCO , APOSTOLOS MALATRAS AND BEAT HIRSBRUNNER

User Interaction

User interaction with graphical objects can be distin-
guished to signals and messages. On one side, Intentional
User Interaction is accomplished by hooking interaction
events generated by graphical objects to the delivery of pre-
defined messages that are dispatched to the representation.
As an example, to deliver the message message when the
user clicks on the object id, the syntax is:

(on (id) clicked notify (message))

Notice that the message must be constructed in advance,
and can carry additional user-defined attributes. On the other
side, Forced User Interaction is achieved with signals. Sig-
nals are generated by graphical objects in response to some
user action; an entity waits on a signal using the wait signal
primitive, stopping its execution until the signal is emitted by
some representation.

(on (id) clicked emit (signal) with (tag))
(wait signal (signal))

Upon hooking an event with a signal, a string fag value
may be specified: when the corresponding wait function in-
tercepts the signal, this value will be set as the return value.

Development Environment

The FrexmLERULEs framework is founded on the afore-
mentioned well-defined conceptual model and additionally
provides a development environment taking into account the
separation of concerns and enabling rapid implementation of
computer enhanced board games. The implementation of
board games using the development environment is a two
step process. The first step involves the Logic Editor tool that
allows high-level design of the game building on the princi-
ples of the model, namely defining the corresponding enti-
ties, their properties and relations in a visual manner. During
the second step the actual implementation of the game func-
tionalities takes place through the Code Editor.

i EftILy Droperti e

Tl
T ksl

.| » Logic Template

[l name and ownership

Name: [cellls

|
|

== Properties

Parent

== Relationships

next
prev

(€11

Figure 2. Logic Editor

The Logic Editor (Figure 2) is used to visually define
game entities along with their properties and relationships,
allowing therefore for a user-friendly modeling of the logical

structure of the game. In the editor, relationships among en-
tities are represented by means of edges of a directed graph,
the nodes of which are the game entities. Moreover, the
designer is given the option to define a hierarchy of enti-
ties, thus enabling inheritance of entities’ characteristics and
their local properties. This creates the abstract outline of the
logical part of the entities. Concrete implementation of the
game itself is achieved by implementing entities’ functional-
ities, such as the specification of behaviors, laws and side-
effects. The latter is performed using the Code Editor, which
is based on the open source Gedit! text editor that has been
enhanced with custom plug-ins, such as syntax highlighting
of the Game Definition Language. As depicted in Figure
3, the left side of the Code Editor enables the browsing of
code, while in parallel maintaining an overview of its struc-
ture. Furthermore, in the lower part a pane displaying the
order of laws and side-effects attached to a specific behavior
is presented.

e

=L

u\;ﬂ %b‘

q
&

to tempStones)

B
[l

Lns, Col 31 NS

Figure 3. Code Editor

FLexiBLERULEs Game Examples

We have presented the conceptual model of the FrLex-
BLERULES framework and explained the Game Definition
Language that we have implemented along with the two vi-
sual tools composing the framework, namely the Logic Ed-
itor and the Code Editor. The Java programming language
was used to implement the tools in order to take advantage of
its portability and interoperability across diverse platforms.
The latter constituted an important requirement for our de-
sign, as we envisage that the developed board games will
be deployed on a multitude of hardware infrastructures, such
as PCs, interactive tables, PDAs, etc. In the following we
present some of the games that have been implemented to
validate the FLExBLERULEs framework approach. In partic-
ular, we strive to highlight the major conceptual differences
between these games, and thus the different aspects involved
in their modeling. Table 1 provides a summary of these char-
acteristics.

The games that we chose to illustrate as proof-of-
concepts, available to play online at the FLEXIBLERULES web-
site2, are Awele, Go and HimalayaTM. Awele is one of the

! http://projects.gnome.org/gedit/
% http://diuf.unifr.ch/pai/flexiblerules

This article has been accepted for inclusion in the International Journal of Gaming and Computer-Mediated Simulations, 2(2), 18-35, April-June 2010.
Content is final as presented, with the exception of layout and pagination.

DECOUPLING ASPECTS IN BOARD GAMES MODELING 7
Table 1
Game Models Characteristics Comparison

Awele Go Himalaya™

Types of Entities few few many
Board Topology Ring Grid Free
User Interfaces single (public) single (public) multiple (public, private)
Number of Players 2 2 3t06
Mundane Tasks None None Many
Game-play and Rules Complexity Simple Medium Hard
User Interaction Start of turn Start of turn Continous
Game Variants Many Few Few

games with the biggest number of known variants in the
world, which validates the need to have a framework like
the proposed one in order to allow for the modification of
rules and thus cater for multiple variants. The difficulties in
designing Go in a fully distributed manner, make it a great
candidate to exhibit the capabilities of our framework in this
respect. The game logic and ruleset of Himalaya™ have
a higher degree of complexity compared to the other two
games. Taken together, the implementation of these three
games serves as evidence that the FLExiBLERULEs framework
can be equally successfully used for different types of board
games.

Awele

Awele (also known as Oware) is an African turn-based
game (Figure 4). It is an interesting example because in con-
trast to other popular games, there exist hundreds of different
variants. We recognize very few entities in the game model,
namely hole (which manages its seeds and the actual game-
play), game (which manages player turns and players’ points
earned during the game). The basic behavior of each entity
is easily modeled, and most of the different variants of the
game can be implemented by just adding or removing laws
and side-effects. Since many laws and side-effects require a
deep knowledge of the underlying structure of the game, in
the following we will discuss only a simple example of both
a law and a side effect regarding allowed moves and winning
conditions. Table 2 summarizes all the laws and side-effects
attached to the entities hole and game.

The most recurrent rule in turn based games such as Awele
dictates that a player cannot play unless it is her turn (Fig-
ure 5). The implementation just compares the current player
property stored by the game entity with the identifier of the
player executing the move.

A side effect that can be easily changed is the number of
points required to win the game. Commonly a player wins by
collecting at least 25 stones. The validity of this condition is
checked every time a hole sends its stones to the game by the
Check Winning Condition side-effect (Figure 6). A potential
variant of the game would just require a change in the value
being tested.

It is interesting to note that this winning condition is com-
pletely separated from the behavior of the entities. In fact, it

5

 GAMEOF AWHE |

Now Playing: playerl

Player2 3

Playerl 2

Figure 4. Awele Game

{var currentPlayer (first (property "players" of "game")))
(if (!'= (property "owner") currentPlayer)
{return))

Figure 5. Law: Allow Only Current Player

could be possible to completely remove this side effect, thus
letting the users continue their game.

Go

Go (Figure 7) falls in the category of checkerboard games
and is probably one of the most interesting game that we
have chosen to model and implement with the FLEXIBLERULES
framework. First different game variants exist. Secondly, the
complexity of interactions between game entities is certainly
higher than in Awele. The modeling of the game is chal-
lenging and game-play rules can be implemented by the cells
themselves. Since each cell is only aware of its local neigh-
bors, many steps of the game-play require the coordination
of cells’ behaviors. In the example of Figure 8 we illustrate

(var currentPlayer (first (property "players'}))
(var currentPlayerStones (match currentPlayer in (property "playerStones")))

(if (= cCurrentPlayerStones 24) (do
(send new message "gameover" to "game" with
"winner" currentPlayer)

end})
Figure 6. Side-effect: Check Winning Condition

This article has been accepted for inclusion in the International Journal of Gaming and Computer-Mediated Simulations, 2(2), 18-35, April-June 2010.
Content is final as presented, with the exception of layout and pagination.

8 FULVIO FRAPOLLI, AMOS BROCCO , APOSTOLOS MALATRAS AND BEAT HIRSBRUNNER

Table 2

Awele Laws & Side-effects

Law Entity Behavior State
Allow Only Current Player Hole startSeeding default
Allow Only Non Empty Hole Hole startSeeding default
Let The Opponent Play Hole startSeeding default
Open Check-point Hole startSeeding default
Stones’ Capturing Hole giveStones default/lastSeed
Side-effect Entity Behavior State
End Of Turn Hole startSeeding default
Last Seed Hole seed default
Chain Reaction Hole giveStones default
Chain Reaction Avoiding GrandSlam Hole giveStones lastSeed
Game Over Game endOfTurn default
Check Winning Condition Game giveStonesToCurrentPlayer default

the logical modeling of a cell and the execution flow occur-
ring when a new stone is placed on it by means of a message
labeled “placeStone”.

Figure 7. Go Game

At any time in the game a cell can be in one of four
different internal states. Empty cells are in state default,
while cells hosting a stone are in state withStone. During the
game, cells have to recognize in a distributed way whether
they have liberties or not; hence two additional intermediate
states are needed, namely checkingLiberties to underline that
a cell cannot infer its liberties without the help of its neigh-
bors and captured for cells that have established that they
do not have any liberties. The behavior of a cell when a new
stone is placed on it consists in changing its state to withStone
and storing the stone’s color. The rules that are attached to
this specific behavior include a law and three side-effects, as
shown in Figure 8. Certain moves are forbidden in Go (e.g.
a stone cannot commit “suicide”) thus a check-point should

be opened allowing for a rollback, if such a forbidden situ-
ation is reached. Moreover, the updateLiberties side-effect
sends messages to the neighbors to trigger the update of their
liberties, as the newly placed stone may have removed the
last liberty of some opponent’s stones and therefore led to
their removal from the game. Subsequently, the checkSuicide
side-effect checks whether the newly placed stone is situated
in a cell without liberties. If this is the case the suicide rule
has been broken and a rollback to the last valid checkpoint
(stored by the law) has to be performed. Otherwise, the fi-
nal side-effect endOfTurn is executed informing all interested
entities that the turn is over.

Message
Label = placeStone

Cell

default lwithStone checkingLiberties || captured

O init ——>

Init Properties
Update Liberties

o placeStone %

Py @

Store stone property Check Suicide @

ChOF:(en. e Change state to @
eckpoin i

P! withStone AT =

O checkForLiberties —>- Check Liberties
OHaveYouAStone? —>[Returnyesino |

Figure 8. Go modeled using FLEXIBLERULES

Himalaya™

Himalaya™ is a board game characterized by the com-
plexity of its rules. In contrast to Awele and Go, the game
can be played by 3 to 6 players, and interactions between
the user and the game are continuous. In fact, each player
secretly chooses her moves (typically 6) at the beginning of
each turn. Once all the players have made their choices, the
game proceeds by executing one move per player. During

This article has been accepted for inclusion in the International Journal of Gaming and Computer-Mediated Simulations, 2(2), 18-35, April-June 2010.
Content is final as presented, with the exception of layout and pagination.

DECOUPLING ASPECTS IN BOARD GAMES MODELING 9

game-play some actions require user intervention, for exam-
ple to let the user choose where to place some objects on the
board; thus, HimalayaTM also served as a validation testbed
for Forced User Interaction, as conceived within the FLExI-
BLERULES framework.

O2 @0;01192 QO ”5 015

Figure 10. Himalaya™ Player View

The implementation makes use of different separate dis-
plays: a public one, and personal ones for each player. The
public display (pictured in Figure 9) serves as the gameboard,
which provides visual feedback of the game situation and of
players actions. Each personal display (Figure 10) shows pri-
vate information and enables players to secretly interact with
the game while choosing their moves and actions.

FLexiBLERULES Implications

The FrexBLERULEs framework makes it easier for game
designers and casual gamers to develop new board games or
modify existing ones. Regarding game designers, the afore-
mentioned advanced features of FLEXIBLERULES enable rapid
prototyping and beta testing of digital board games, having
therefore a noteworthy impact on the time and effort required
to find the best possible game balance. Contrariwise, casual
gamers gain an increased level of satisfaction and enjoyabil-
ity, as they have overall control of the game and its features.

Furthermore, FLexiBLERULES has implications on the ed-
ucational domain as it can be used to stimulate the pro-
gramming learning process through its user friendly intu-
itive environment. IT students profit from and are motivated
by a game-oriented development environment, which effec-
tively makes the interactive learning of basic programming
paradigms more enjoyable and hence successful. Moreover,
it is evident that the direct involvement of the end-user in the
game development process will lead to enhanced and more
widely accepted digital board games.

Conclusions and Future Work

The facilitation of board game development efforts and
support for the complete set of features that traditional phys-
ical board games exhibit, most importantly the high degree
of flexibility in player actions, has been the motivation of
our work. In this respect, we deem it necessary to have a
well-established model for board game modeling, taking into
account their inherent characteristics and avoiding the rigid-
ness of current implementations. Additionally, developers
of games should be provided with useful tools to make their
task easier and to allow for game-specific patterns to be em-
ployed.

In this paper we presented the FLEXBLERULES framework
for the modeling of board games. The proposed game model
is composed of a taxonomy of entities with precise properties
and behaviors. In order to simplify the conceptualization of
rules, we proposed a decoupling of the game logic into dif-
ferent aspects: laws, behaviors, and side-effects. Consistent
with the goals of aspect oriented programming, we believe
that such a separation of concerns allows for a more natu-
ral way to define the logic behind board games. The frame-
work has been validated through the implementation of three
games, i.e. Awele, Go and Himalaya™ .

Future work will include the improvement of existing
tools and the implementation of an integrated visual game
development environment. Additionaly both a qualitative
and a quantitative user evaluation of the framework will be
carried out. The former aims at assessing the game-play en-
joyment compared to traditional physical games, while the
latter will focus on the usability of the game modeling lan-
guage and tools, which will give us indications about the ef-
fort put in by inexperienced users to do the modeling.

Acknowledgments

The authors would like to thank for her invaluable
help and useful comments.

References

Amory, A. N. K. V. J., & Adams, C. (1999). The use of com-
puter games as an educational tool: identification of appropriate
game types and game elements. British Journal of Educational
Technology, 30(4), 311-321.

Bjork, S., & Holopainen, J. (2004). Patterns in game design (game
development series). Charles River Media.

DeKoven, B. D. (1978). The well-played game: A player’s philos-
ophy. Anchor Books, New York.

10

Elrad, T., Filman, R. E., & Bader, A. (2001). Aspect-oriented pro-
gramming: Introduction. Commun. ACM, 44(10), 29-32.

Jarvinen, A. (2003, November). Making and breaking games: a ty-
pology of rules. In C. Marinka & R. Joost (Eds.), Level up con-
ference proceedings (pp. 68-79). Utrecht: University of Utrecht.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J.-M., et al. (1997). Aspect-oriented programming.
In Ecoop’97 object-oriented programming (pp. 220-242).

Loenen, E. van, Bergman, T., Buil, V., Gelder, K. van, Groten, M.,
Hollemans, G., et al. (2007). Entertaible: A solution for social
gaming experiences. In Tangible play workshop, iui conference.

Lopes, C. V., Dourish, P., Lorenz, D. H., & Lieberherr, K. (2003).
Beyond aop: toward naturalistic programming. In Oopsla
'03: Companion of the 18th annual acm sigplan conference on
object-oriented programming, systems, languages, and applica-
tions (pp. 198-207). New York, NY, USA: ACM.

Malone, T. W. (1981). Toward a theory of intrinsically motivating
instruction. Cognitive Science, 5(4), 333 - 369.

Mandryk, R. L., & Maranan, D. S. (2002). False prophets: ex-
ploring hybrid board/video games. In Chi 02: Chi '02 extended
abstracts on human factors in computing systems (pp. 640-641).
New York, NY, USA: ACM.

Mazalek, A., Reynolds, M., & Davenport, G. (2007, October).

This article has been accepted for inclusion in the International Journal of Gaming and Computer-Mediated Simulations, 2(2), 18-35, April-June 2010.
Content is final as presented, with the exception of layout and pagination.

FULVIO FRAPOLLI, AMOS BROCCO , APOSTOLOS MALATRAS AND BEAT HIRSBRUNNER

The tviews table in the home. Horizontal Interactive Human-
Computer Systems, 2007. TABLETOP ’07. Second Annual IEEE
International Workshop on, 52-59.

Miller, S. (2001, Apr). Aspect-oriented programming takes aim at
software complexity. IEEE Computer, 34(4), 18-21.

Rashid, A., & Moreira, A. (2006). Domain models are not aspect
free. Model Driven Engineering Languages and Systems, 155—
169.

Reese, C., Duvigneau, M., Kohler, M., Moldt, D., & Rolke, H.
(2003, February). Agent based settler game. In Proceedings
of agentcities agent technology competition (atc03), barcelona,
spain. Agentcities.NET.

Salen, K., & Zimmerman, E. (2003). Rules of play : Game design
fundamentals. The MIT Press.

Sanchez-Crespo, D. (2003). Core techniques and algorithms in
game programming. New Riders Games.

Steimann, F. (2000). On the representation of roles in object-
oriented and conceptual modelling. Data Knowledge Engineer-
ing, 35(1), 83-106.

Steimann, F. (2005). Domain models are aspect free. In L. C.
Briand & C. Williams (Eds.), Models (Vol. 3713, p. 171-185).
Springer.

